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6.2. Give a universal characterization of kernel and cokernel, and show that kernel
and cokernel are dual notions.

6.3. Dualize the assertions of Lemma 1.1, the Five Lemma (Exercise 1.2) and those
of Exercises 3.4 and 3.5.

6.4. Let rp : A--+B. Characterize imp, ip -1 Bo for Bo C B, without using elements.
What are their duals? Hence (or otherwise) characterize exactness.

6.$. What is the dual of the canonical homomorphism a : Q Ai-. H Ai? What is
iEJ iEJ

the dual of the assertion that a is an injection? Is the dual true?

7. injective Modules over a Principal Ideal Domain

Recall that by Corollary 5.2 every projective module over a principal
ideal domain is free. It is reasonable to expect that the injective modules
over a principal ideal domain also have a simple structure. We first
define:

Definition. Let A be an integral domain. A A-module D is divisible
if for every d e D and every 0 $ A E A there exists c e D such that Ac = d.
Note that we do not require the uniqueness of c.

We list a few examples:
(a) As 71-module the additive group of the rationals Q is divisible.

In this example c is uniquely determined.
(b) As 71-module Q/Z is divisible. Here c is not uniquely determined.
(c) The additive group of the reals IR, as well as IR/Z, are divisible.
(d) A non-trivial finitely generated abelian group A is never divisible.

Indeed. A is a direct sum of cyclic groups, which clearly are not divisible.
Theorem 7.1. Let A be a principal ideal domain. A A-module is in-

jective if and only if it is divisible.
Proof First suppose D is injective. Let d e D and 0 $ A E A. We

have to show that there exists c e D such that Ac = d. Define a : A-->D
by a(1) = d and p : A--+A by µ(1) = A. Since A is an integral domain,

i; A = 0 if and only if i; = 0. Hence p is monomorphic. Since D is
injective. there exists fl: A-+D such that /iµ = a. We obtain

d=a(1)=/3µ(l)=/3(l)=2/3(11.

Hence by setting c = /3(1) we obtain d = Ac. (Notice that so far no use is
made of the fact that A is a principal ideal domain.)

Now suppose D is divisible. Consider the following diagram

A, ' )B
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We have to show the existence of fl: B--+D such that /3µ = a. To
simplify the notation we consider p as an embedding of a submodule A
into B. We look at pairs (A,, a) with A S A; C B, aj: Aj-*D such that
aJIA = a. Let 0 be the set of all such pairs. Clearly 0 is nonempty, since
(A, a) is in d.. The relation (A;, a)5 (Ak, ak) if A; c Ak and aklaj = ai
defines an ordering in P. With this ordering 0 is inductive. Indeed,
every chain (A;, 05), j e J has an upper bound, namely (U A;, U a)
where UAW is simply the union, and Ua is defined as follows: If a e UA;,
then a e Ak for some k e J. We define U+a,(a) = ak(a). Plainly U aj is well-
defined and is a homomorphism, and

(A,,a,):! (UA,,Ua)
By Zorn's Lemma there exists a maximal element (A, a) in 0. We shall
show that A = B, thus proving the theorem. Suppose A + B; then there
exists b e B with b 0 A. The set of A e A such that Ab e A is readily seen
to be an ideal ofA. Since A is a principal ideal domain, this ideal is generated
by one element, say A0. If A0 + 0. then we use the fact that D is divisible
to find c e D such that a(A0 b) = A c. If 20 = 0, we choose an arbitrary c.
The homomorphism a may now be extended to the module A generated
by A and b, by setting &(a + A b) = a() + A c. We have to check that this
definition is consistent. If 2b e A, we have &(A b) = Ac. But A = l; A0 for some

E A and therefore A b = l; 20 b. Hence

b) 1 c=Ac.
Since (A, a) < (A, &), this contradicts the maximality of (A, a), so that
A = B as desired. Q

Proposition 7.2. Every quotient of a divisible module is divisible.
Proof. Let e : D--» E be an epimorphism and let D be divisible.

For e e E and 0+ 2 E A there exists d c- D with s(d) = e and d' e D with
Ad'=d. Setting e' = e(d') we have 2 e' = As(d') = e(2 d') = s(d) = e. 0

As a corollary we obtain the dual of Corollary 5.3.
Corollary 7.3. Let A be a principal ideal domain. Every quotient of an

injective A-module is injective. 0
Next we restrict ourselves temporarily to abelian groups and prove

in that special case
Proposition 7.4. Every abelian group may be embedded in a divisible

(hence injective) abelian group.
The reader may compare this Proposition to Proposition 4.3, which

says that every A-module is a quotient of a free, hence projective, A-
module.

Proof. We shall define a monomorphism of the abelian group A
into a direct product of copies of Q/Z. By Proposition 6.3 this will
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suffice. Let 0 + a e A and let (a) denote the subgroup of A generated by a.
Define a : (a)-+Q2/7 as follows: If the order of a e A is infinite choose
0 $ a(a) arbitrary. If the order of a e A is finite, say n, choose 0+a(a)
to have order dividing n. Since Q2/71 is injective, there exists a map

A--+ Q2/7 such that the diagram
(a),---+ A

a

QT

is commutative. By the universal property of the product, the Na define
a unique homomorphism/3: A- H (Q 171)a.Clearly#isamonomorphism

since /3a(a) + 0 if a + 0. Q

aeA
a*O

For abelian groups, the additive group of the integers 71 is projective
and has the property that to any abelian group G + 0 there exists a non-
zero homomorphism p : 7-+G. The group Q2/71 has the dual properties;
it is injective and to any abelian group G + 0 there is a nonzero homo-
morphism y,: G-+Q2/7L. Since a direct sum of copies of 71 is called free,
we shall term a direct product of copies of Q/71 cofree. Note that the two
properties of 7L mentioned above do not characterize 71 entirely. Therefore
"cofree" is not the exact dual of "free", it is dual only in certain respects.
In Section 8 the generalization of this concept to arbitrary rings is
carried through.

Exercises:

7.1. Prove the following proposition: The A module I is injective if and only if
for every left ideal J C A and for every A-module homomorphism a : J--+I the
diagram J--*A

aI

I
may be completed by a homomorphism f : A--+I such that the resulting triangle
is commutative. (Hint: Proceed as in the proof of Theorem 7.1.)

7.2. Let F--.A--.O be a short exact sequence of abelian groups, with F
free. By embedding F in a direct sum of copies of Q. show how to embed A
in a divisible group.

7.3. Show that every abelian group admits a unique maximal divisible subgroup.
7.4. Show that if A is a finite abelian group, then Hom7(A, Q/Z) = A. Deduce

that if there is a short exact sequence of abelian groups
with A finite, then there is a short exact sequence

7.5. Show that a torsion-free divisible group D is a Q-vector space. Show that
Hom7(A, D) is then also divisible. Is this true for any divisible group D?

7.6. Show that Q is a direct summand in a direct product of copies of Q/1L.


