7. The Tensor Product 109

Exercises:

6.1. Show that if A is torsionfree, Ext(4,Z) is divisible, and that if A4 is divisible,
Ext(4,Z) is torsionfree. Show conversely that if Ext(4,Z) is divisible, 4 is
torsionfree and that if Ext(4,Z) is torsionfree and Hom(4,Z)=0 then 4 is
divisible. (See Exercise 5.8.)

6.2. Show that Ext(®, Z) is divisible and torsionfree, and hence a Q-vector space.
(Compare Exercise 2.4.) Deduce that Ext(Q,Z)~R, Hom(Q, Q/Z)~R.
Compute Ext(R,Z).

6.3. Show that Ext(Q/Z, Z) fits into exact sequences

0—-Z—Ext(Q/Z,Z)>R—0,
0—Ext(Q/Z,Z)—»R—Q/Z—0.
6.4. Show that the simultaneous equations Ext(A4,Z)=0, Hom(4,Z)=0 imply
A=0.
6.5. Show that the simultaneous equations Ext(4,Z)=Q, Hom(4,Z)=0 have

no solution. Generalize this by replacing @ by a suitable @-vector space.
What can you say of the solutions of Ext(4.Z)=R. Hom(4.Z)=0?

7. The Tensor Product

In the remaining two sections of Chapter III we shall introduce two
functors: the tensor product and the Tor-functor.
Let A again be a ring, 4 a right and B a left A-module.

Definition. The tensor product of A and B over A is the abelian group,
A®,B, obtained as the quotient of the free abelian group on the set
of all symbols a®b, ae A, b € B, by the subgroup generated by

(@, +a,)®b—(a; ®b +a,®b),a,,a,€ A,be B;
a®(b, +b,)—(a®b, +a®b,),ac 4,b,,b, € B;
al®b—a®lb,ac A,beB,Ac A.

In case A =7 we shall allow ourselves to write A® B for A®zB. For
simplicity we shall denote the element of A ®,B obtained as canonical
image of a®b in the free abelian group by the same symbol a®b.

The ring A may be regarded as left or right A-module over A. It is
easy to see that we have natural isomorphisms (of abelian groups)

A®,B>B, A®, A A

given by A®b+—Ab and a®@ A—al.
For any a: A— A’ we define an induced map o, : A®,B—A'®,B
by a,(@a®b)=(xa)®b, acA, beB. Also, for f:B—B we define
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By:A®,B—>A®,B by B, (a®b)=a®(Bb), ac A, be B. With these
definitions we obtain

Proposition 7.1. For any left A-module B, — ®,B: 0, —ADb is a
covariant functor. For any right A-module A, A®Q,— : M4—Ab is a
covariant functor. Moreover, — ®, — is a bifunctor.

The proof is left to the reader. []
Ifa: A— A’ and f: B— B’ are homomorphisms we use the notation

c@f=0,pf,=Pf,0,: AQB—oA'®,B .

The importance of the tensorproduct will become clear from the
following assertion.

Theorem 7.2. Forany right A-module A, the functor A ®, — : M, — Ab
is left adjoint to the functor Homgz(A4, —): Ab—M,.

Proof. The left-module structure of Homgz(A4, —) is induced by the
right-module structure of A4 (see Section [.8). We have to show that there
is a natural transformation # such that for any abelian group G and any
left A-module B

n: Homz(4 ® 4B, G)=>Hom (B, Homz(4, G)).
Given ¢ : A ®,B— G we define 1(¢p) by the formula

((n(9)) (b)) (@) = @(a®D) .

Given y:B—Homgz(A4, G) we define 7j(p) by (7j(y)) (a®b) = (p(b)) (a).
We claim that #,# are natural homomorphisms which are inverse to
each other. We leave it to the reader to check the necessary details. []

Analogously we may prove that — ®, B : M, — Ab is left adjoint to
Homg(B. —): Ab— M, where the right module structure of Homg (B, G)
is given by the left module structure of B. We remark that the tensor-
product-functor A ®, — is determined up to natural equivalence by the
adjointness property of Theorem 7.2 (see Proposition I1.7.3); a similar
remark applies to the functor — ®,B.

As an immediate consequence of Theorem 7.2 we have

Proposition 7.3. (i) Let {B;}, jeJ, be a family of left A-modules and
let A be a right A-module. Then there is a natural isomorphism

A®A(@ Bj);@(A ®4B)).

jeJ JjeJ

(i) If B£5B-£5B"—0 is an exact sequence of left A-modules, then
Jor any right A-module A, the sequence

A®,B-E>40,Bt5A4®,B"—0
is exact.
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Proof. By the dual of Theorem I1.7.7 a functor possessing a right
adjoint preserves coproducts and cokernels. []

Of course there is a proposition analogous to Proposition 7.2 about
the functor — ®,B for fixed B. The reader should note that, even if f
in Proposition 7.3 (ii) is monomorphic, f, will not be monomorphic in
general: Let A =7Z, A =7Z,, and consider the exact sequence Z-5&Z—»Z,
where p is multiplication by 2. Then

(@M =n@2m=2n@m=0@m=0,

neZ,, meZ Hence pu,:Z,Z—Z,QZ is the zero map, while
Z,L=Z,.

Definition. A left A-module B is called flat if for every short exact
sequence A'-£ A-2» A” the induced sequence

0_>A’ ®AB“”—*)A ®A B—’A” ®AB'—)0

is exact. This is to say that for every monomorphism p:A'— A the
induced homomorphism , : A’ ®B— A ®, B is a monomorphism. also.

Proposition 7.4. Every projective module is flat.

Proof. A projective module P is a direct summand in a free module.
Hence, since A ® , — preserves sums, it suffices to show that free modules
are flat. By the same argument it suffices to show that A as a left module
is flat. But this is trivial since AQ,A=A4. []

For abelian groups it turns out that “flat™ is “torsionfree” (see
Exercise 8.7). Since the additive group of the rationals @ is torsionfree
but not free, one sees that flat modules are not, in general, projective.

Exercises:

7.1. Show that if A4 is a left I'-right A-bimodule and B a left A-right X-bimodule
then A ®, B may be given a left I'-right Z-bimodule structure.

7.2. Show that, if A is commutative, we can speak of the tensorproduct A ®,B
of two left (!) A-modules, and that A ®, B has an obvious A-module structure.
Also show that then A®,B~B®,A4 and (4 ®,B)®,C=A®,B®,C) by
canonical isomorphisms.

7.3. Prove the following generalization of Theorem 7.2. Let A4 be a left I-right
A-bimodule, B a left A-module and C a left -module. Then A ®,B can be
given a left '-module structure, and Hom (4, C) a left A-module structure.
Prove the adjointness relation

n: Hom;(4 ®,B, C)>Hom (B, Hom(4, C)).
7.4. Show that, if A, B are A-modules and if ) a;®b,=0 in A ®,B, then there are
i

finitely generated submodules 4,< A4, B, C B such that a,€ Ay, b; € B, and
Y a;®b;=0 in A, ®B,.
i



