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1 Ex L2-2

Let U : H — H be a linear unitary transformation. Suppose that U(z) = U(y), fix w € H
arbitrarily. Observe

0=(0,U(w)) = ({U(x) = Uly),U(w)) = Uz —y), U(w)) = (z - y,w)

Since (z —y,w) = 0 for all w, it must be true that x —y = 0. So x = y and U is injective.
Consider the hilbert space [? of square-summable sequences with inner product

oo

n=1
The mapping F : [> — [? given by

(al,ag,...) '-)(0,@1,@2,...)

is clearly linear and not surjective. Also F' is unitary because

(F((2)n), F((0))) =0+ 2407 = Z 2iW; = ((2)n, (W)n)

=2

2 Ex L2-4

Let U be either the unitary+linear or anti-unitary+anti-linear transformation as defined
in the proof of Wigner’s theorem. Let ¢ € H. Since W is dense then we can write ¢ =
lim,, o0 ¢ with ¢, € W. Then U**(¢) is defined as lim,, o, (U(¢,)). This is well-defined,
which I assume I do not need to prove. Regardless of what property U has, additivity is
shown by



U (¢ +¢) = lim U(gn + ¢n)
= lim U(¢,) + lim U(h,) = U™ () + U™ (3))

n—oo n—oo
We could exchange the limit with the + operation precisely because + : CxC — C is
continuous. Here implicitly we used the fact that if ¢ = lim,,_, ¢, and ¢ = lim,,_,, ¢, then
¢+ ¥ = lim,_,o0 ¢, + ¥, Now if U is anti-linear we have:

U (\p) = lim U(A@) = lim X - U(¢) = A lim U(p) = AU (¢)
n—oo n—oo n—oo
The limit commutes with scalar multiplication, that being a continuous map C x C — C.
Also implicitly above we used lim,, .o A¢ = Alim,,_, ¢,. The unitary case is similar, in
particular there is no need to conjugate A above. Still assuming that U is anti-linear and
anti-unitary, we show finally that U®* is anti-unitary:

(U(6), U= () = {lim U(,). lim U(:5,))
= lim lim (U(¢n), U(¢m)) Since (—, —) is cts

n—0o0 Mm—0o0

= lim lim (¢, ¥mn) U is anti-unitary

n—o0 Mm—0o0

= lim lim (¢, ¢n)

= (¥, ¢)

= (¢, v)

The case where U is linear and unitary is less verbose but ultimately the same.

Now to show that U is surjective. Since U®" is either linear and unitary or anti-linear
and anti-unitary, it is automatically injective, so bijectivity follows from surjectivity. Let
{1x} be the orthonormal dense basis for H as in the proof of Wigner’s theorem. Then U is
defined as follows on unit vectors ¢ =, _; Cyt)y, with Cy # 0:

U(p) = Z CrU () unitary case
k=1

U(p) = Z@U (¢r) anti-unitary case
k=1

U is defined on arbitrary vectors by extending this definition in the obvious way. Now

Wh={¢' e H [ (U(th), &) # 0}

is a dense subset of H for the exact same reasons that W is. Let ¢’ € H. Then by the above
discussion we can write ¢/ = lim,_,, ¢/, where ¢, € W’. Let S} be the ray containing ¢},



since @ is surjective Q(Sy) = S, for some ray Sy, for all k. Let ¢, € Sy, be chosen arbitrarily.
Now observe that

(11, o) | = (R, Sk) R, being the ray containing 1,

(R
= (Q(R1), Q(Sk))
[(U(¥1), d))| #0  since ¢, € W

So we see that ¢, € W for all k. Therefore we can conclude that U(¢x) € Q(Sk) = S}, so
for all k there exists A\ € U(1) such that

U(ér) = ¢,
In the unitary case we conclude that
¢ = lim ¢} = lim U(Ary) = Uext(/}i_g}o Ak )
In the anti-unitary case we conclude that
¢ = lim ¢} = lim UAxor) = Uext(]}i_{folo)\_kéﬁk)

So U¢® is surjective. Now, I am not sure I need to do this, but just in case: a proof that
A:@k is a cauchy sequence:

H)‘n¢n - mgbm” < n¢n - )\m¢ma )\ngbn - )\m¢m>

()\ U((bn) AU (0m), MU (dn) — AU (b)) by linearity

= ll¢n, — ¢nl

So cauchyness follows from that of {¢/,}. In the anti-unitary case the same process will show
that \i¢y is cauchy as well.
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