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0.1 Question 1 (L3-6)

Part (i): We state and prove the lemma below:

Lemma 0.1.1. Define the function � : S2 ⇥ [0, 2⇡) ! SO(3), which sends
(bn,↵) to the matrix R

bn
↵. Then, � is surjective and continuous.

Proof. Suppose that � is defined above. The goal is to show that every
element of SO(3) can be expressed as a rotation R

bn
↵ for some ↵ 2 R and

bn 2 S
2.

To show: (a) For all A 2 SO(3), A = R
bn
↵ for some ↵ 2 R and bn 2 R3.

(a) Assume that A 2 SO(3). We claim that 1 is an eigenvalue of A.

To show: (aa) 1 is an eigenvalue of A.

(aa) Let �1 2 C be an eigenvalue of A. Let f : R3 ! R3 be the function
whose associated matrix is A. Since A 2 SO(3), f must preserve the
complex inner product. Let u 2 R3 be an eigenvector of A, with eigenvalue
�1. Then,

hu, ui = hf(u), f(u)i = h�1u,�1ui = |�1|2hu, ui.

So, |�1| = 1. Let �2 and �3 denote the other two eigenvalues of A. By the
above reasoning, they must also have magnitude 1. We now have the
following two cases:

Case 1: All the eigenvalues are real.

Recall that 1 = det(A) = �1�2�3. If �1,�2,�3 2 R, then either all of the
eigenvalues are 1 or exactly two of them are �1, which renders the last
eigenvalue 1. Thus, 1 is an eigenvalue of A in this case.

Case 2: At least one of the eigenvalues are complex.

Since A is a 3⇥ 3 matrix with elements in R, its characteristic polynomial
cA(X) must be a degree 3 polynomial with real coe�cients. Suppose
without loss of generality that �1 2 C with non-zero imaginary part. Since
the eigenvalues of A are roots of the real polynomial cA(X), we deduce that
another eigenvalue �2 of A must satisfy �2 = �1. Hence,
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1 = det(A) = �1�1�3 = |�1|2�3 = �3.

Once again, 1 = �3 is an eigenvalue of A. Since we have exhausted all
possible cases, we can finally deduce that 1 is an eigenvalue of A 2 SO(3).

(a) Since 1 is an eigenvalue, there exists a non-zero vector v1 2 R3 such that
Av1 = v1. By dividing both sides by the norm of v1, we can assume without
loss of generality that v1 is a unit vector in the unit sphere S

2. Take two
other vectors v2, v3 2 R3. We can use the Gram-Schmidt procedure to
obtain an orthonormal basis {v1, ṽ2, ṽ3} of R3. Now consider the 3⇥ 3
matrix B = [v1, ṽ2, ṽ3]. Since the columns of B form an orthonormal basis,
B must be an orthogonal matrix. By permuting the second and third
columns, we can assume that det(B) = 1 and thus, that B 2 SO(3).

Now, we compute the matrix A with respect to our new orthonormal basis
{v1, ṽ2, ṽ3}. First consider the vector subspace span(v1). It orthogonal
complement is given by

(span(v1))
? = {v 2 R3 | v · v1 = 0} = span(ṽ2, ṽ3).

Our second observation is that since SO(3) is a group, the matrix product
AB = [Av1, Aṽ2, Aṽ3] = [v1, Aṽ2, Aṽ3] 2 SO(3). As a result of this, the
vectors Aṽ2, Aṽ3 2 (span(v1))? = span(ṽ2, ṽ3), since the columns of AB
form an orthonormal basis of R3. Hence, we can write Aṽ2 = aṽ2 + bṽ3 and
Aṽ3 = cṽ2 + dṽ3 for some a, b, c, d 2 R.

Using this information, we can now write the matrix A with respect to our
constructed orthonormal basis {v1, ṽ2, ṽ3}. We find that

B
�1
AB =

0

@
1

a b

c d

1

A .

Since A,B 2 SO(3), the above matrix is also in SO(3), revealing that the
submatrix

✓
a b

c d

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
2 SO(2)

for some ✓ 2 R. So, B�1
AB = R

x
✓ . Therefore, A = BR

x
✓B

�1. Due to the
change of basis induced by the matrix B 2 SO(3) (notably, it sends the
x-axis to v1), we can interpret A as a rotation by ✓ about an axis in the
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direction of v1. Therefore, A = R
v1
✓ . Hence, every matrix in SO(3) is a

rotation matrix. In particular, every matrix in SO(3) is a rotation matrix
whose axis of rotation is the eigenvector with eigenvalue 1.

(a) Now assume that C 2 SO(3). Then, from part (aa), there exists
✓ 2 [0, 2⇡) and bw 2 S

2 such that C = R
bw
✓ . Consequently,

�( bw, ✓) = R
bw
✓ = C, revealing that � is surjective. To see that it is

continuous, we first identify the set of 3⇥ 3 matrices M3⇥3(R) with R9 (this
is by “reading o↵” the elements of a matrix). Take �(bz, ⌘) = R

bz
⌘. Note that

the entries of the matrix R
bz
⌘ are linear combinations of trigonometric

functions, which are continuous. Since all of the component functions of �
are continuous in this case, we deduce that � must also be a continuous
function.

Part (ii): Assume that Rbn
↵ and R

bm
� are rotation matrices in SO(3).

Assume that ⇠ was defined as above. In order to give an explicit
description of ⇠ on the set S2 ⇥ [0, 2⇡), it su�ces to know when R

bn
↵ = R

bm
� .

The claim here is that

To show: (a) If Rbn
↵ = R

bm
� , where ↵, � 2 [0, 2⇡) and bn, bm 2 S

2, then the
following three cases are possible:

1. ↵ = � = 0.

2. bm = �bn and � = �↵

3. ↵ = � and bm = bn

(a) Assume that Rbn
↵ = R

bm
� , with ↵, � 2 [0, 2⇡) and bn, bm 2 S

2. Then,

I = R
bn
↵
�1
R

bm
� , where I is the 3⇥ 3 identity matrix. Recall from the previous

result that R bm
� has an eigenvalue of 1, with corresponding eigenvector bm.

By applying this, we obtain

bm = I bm = R
bn
↵
�1
R

bm
� bm = R

bn
↵
�1 bm.

Thus, bm is also an eigenvector of Rbn
↵
�1

with eigenvalue 1. But,

R
bn
↵
�1

= R
bn
�↵. Again, the previous result shows that for all ↵ 2 [0, 2⇡), bn is

an eigenvector with eigenvalue 1, just like bm.

Observe that for all rotation matrices Rbn
↵ 2 SO(3), if 1 is an eigenvalue

with multiplicity greater than 1, then all of the eigenvalues of Rbn
↵ are 1
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because det(Rbn
↵) = 1. In this case, Rbn

↵ must be the identity matrix I. So,
↵ = 0 for this to be true. Translating this back to the original scenario, we
deduce that ↵ = � = 0.

For the other case, where the eigenvalue of 1 occurs with multiplicity 1 in
the matrix R

bn
�↵, then bn is the rotation axis for Rbn

�↵. But, bm is also an
eigenvector with eigenvalue 1. So, bm is also an axis of rotation for Rbn

�↵.
This establishes that either bm = bn or bm = �bn. In the first case, we must
have ↵ = � for Rbn

↵ = R
bm
� to be true. For the second case, we similarly must

have ↵ = ��.

Now we can explicity describe the relation ⇠ on S
2 ⇥ [0, 2⇡). We say that

(bn,↵) ⇠ (bm, �) if any one of the three conditions below are satisfied:

1. ↵ = � = 0.

2. bm = bn and ↵ = �.

3. bm = �bn and ↵ = ��.
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0.2 Question 2 (L3B-2)

Fundamentally, this question is asking about a specific case of a ringed
space. The following results will make this remark precise.

Lemma 0.2.1 (Restriction of a smooth map). Let M be a smooth
n-manifold and W be an open subset of M , with respect to the manifold
topology on M . Let f : W ! R be a smooth function. If W 0 is another open
subset of M such that W 0 ✓ W , then the restriction f |W 0 : W 0 ! R is also
a smooth function.

Proof. Assume that M is a smooth n-manifold with atlas {(Ua,'a)}a2I and
that W is an open subset of M , with respect to the manifold topology.
Assume that f : W ! R is smooth. Then, for all w 2 W , there exists a
coordinate chart (Ub,'b) such that w 2 Ub and f � '�1

b is smooth as a
function from 'b(Ub) ✓ Rn to R. We observe that its restriction
f |W 0 : W 0 ! R to the open set W 0 ✓ W can be described by the following
composite:

W
0

W Rf

Here, the first arrow denotes the inclusion map ◆ : W 0 ! W . Since the
composition of smooth functions is smooth, it su�ces to show that ◆ is a
smooth function. Assume that w0 2 W

0. Since W
0 ✓ W , there exists a

coordinate chart (Ub,'b) such that w0 2 Ub and the composite

'b(W 0 \ Ub) W
0

W 'b(W \ Ub)
'�1
b 'b

is the inclusion of the open set 'b(W 0 \ Ub) in 'b(W \ Ub). This is smooth
because each of the component functions of this composite is smooth (each
component function is the polynomial j(x) = x). Hence, the inclusion map
◆ : W 0 ! W is smooth and consequently, f |W 0 must also be smooth because
it is the composition of smooth functions.

Theorem 0.2.2 (Presheaf on a Smooth Manifold). Let (X, ⌧) be a
topological space, where X is a smooth n-manifold and ⌧ is the manifold
topology on X. Let C denote the category with open subsets of X as the
objects and inclusion maps i

V
U as the morphisms. The inclusion maps are

defined as follows: If U ✓ V , then
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i
V
U (U) = V.

Then, there exists a contravariant functor OX : C ! Rng (Rng is the
category of rings) such that each open set U is mapped to the commutative
ring of real-valued smooth functions on U and each inclusion map is
mapped to restriction maps. More succinctly, for all open subsets U, V ✓ X

such that U ✓ V ,

OX(U) = {f : U ! R | f is smooth} and OX(i
V
U ) = res

V
U

In turn, each restriction map res
V
U : OX(V ) ! OX(U) is defined as

res
V
U (f) = f |U .

Proof. Assume that X is a smooth n-manifold, ⌧ is the manifold topology
and (X, ⌧) is a topological space. Assume that C is the category of open
sets in X as defined above. Assume that OX is the map between C and
Rng as described above.

To show: (a) If U 2 ob(C ), then OX(U) 2 ob(Rng).

(b) OX(iUU) = res
U
U and res

U
U is the identity morphism on OX(U).

(c) If U, V,W 2 ob(C ) with U ✓ V ✓ W , then, resWU = res
V
U � resWV .

(a) This follows from our careful definition of OX , since we map U to the
commutative ring of smooth real-valued functions on U (recall that sums
and products of smooth functions are indeed smooth).

(b) Assume that U 2 ob(C ). Then, the inclusion map i
U
U : U ! U is the

identity morphism on U . From the definition of OX , OX(iUU) = res
U
U . It

remains to show that resUU is the identity morphism defined on OX(U).
But, for all f 2 OX(U), resUU(f) = f |U = f . Hence, resUU is the identity
morphism of OX(U).

(c) Assume that U, V,W 2 ob(C ) with U ✓ V ✓ W . Assume that
f 2 OX(W ). Then, resWU (f) = f |U . Furthermore, we observe that

(resVU � resWV )(f) = res
V
U (res

W
V (f)) = res

V
U (f |V ) = f |U = res

W
U (f).

Therefore, resWU = res
V
U � resWV . We note that in the category C ,

i
W
U = i

W
V � iVU , which means that under OX , the order of composition of
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morphisms is reversed.

Therefore, OX is a contravariant functor from C to Rng. This is called a
presheaf on the topological space (X, ⌧).

Theorem 0.2.3 (Ringed Space on a Smooth Manifold). Let X be a smooth
n-manifold, ⌧ be the manifold topology on X and (X, ⌧) be the resultant
topological space. Let OX be the presheaf on X which was defined in 0.2.2.
Then, OX is a sheaf on X and (X, ⌧,OX) is a ringed space.

Proof. Assume that X is a smooth n-manifold, ⌧ is the manifold topology
on X and (X, ⌧) is the resultant topological space. Assume that OX is the
presheaf defined in 0.2.2.

To show: (a) (Locality) If U 2 ⌧ , U =
S

i2I Vi is an open cover for U and if
f1, f2 2 OX(U) such that resUVi

(f1) = res
U
Vi
(f2) for all i 2 I, then f1 = f2.

(b) (Gluing) If U 2 ⌧ , U =
S

i2I Vi is an open cover for U and for all Vi,

there exists fi 2 OX(Vi) such that resVi
Vi\Vj

(fi) = res
Vj

Vi\Vj
(fj) for all i, j 2 I,

then there exists a f 2 OX(U) such that for all i 2 I, resUVi
(f) = fi.

(a) Assume that U 2 ⌧ and
S

i2I Vi is an open cover for U . Assume that
f1, f2 2 OX(U) such that resUVi

(f1) = res
U
Vi
(f2) for all i 2 I. Since

f1|Vi = f2|Vi for all i 2 I, f1 and f2 must agree on
S

i2I Vi. Since
U ✓

S
i2I Vi, it must follow that f1 and f2 agree on U . So, f1 = f2.

(b) Assume that U 2 ⌧ and
S

i2I Vi is an open cover for U . Assume that for

all i 2 I, there exists fi 2 OX(Vi) such that resVi
Vi\Vj

(fi) = res
Vj

Vi\Vj
(fj) for

all i, j 2 I. Assume that x 2 U . Then, there exists a i 2 I such that x 2 Vi.
So, we define the function f such that f(x) = fi(x) for all x 2 Vi and i 2 I.

To show: (ba) f is well defined.

(bb) For all i 2 I, resUVi
(f) = fi.

(bc) f is a smooth function.

(ba) Assume that x 2 Vi \ Vj for some i, j 2 I. Then, fi(x) = fj(x) because

res
Vi
Vi\Vj

(fi) = res
Vj

Vi\Vj
(fj). So, f must be a well defined function.
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(bb) From our construction of f , resUVi
(f) = fi.

(bc) Since the family of functions fi : Vi ! R are all smooth, we can take
coordinate charts (Uj,i,'j,i) such that Vi ✓

S
j Uj,i and the map fi � '�1

j,i is a
smooth function from '(Vi \ Uj,i) ✓ Rn to R. To see that f is smooth,
assume that x 2 X. Then, x 2 Vi for some i 2 I. By construction,
f(x) = fi(x) and so, f � '�1

j,i = fi � '�1
j,i for some coordinate chart (Uj,i,'j,i)

containing x. Since the RHS is a smooth function from Rn to R, the LHS
must also be smooth. Hence, f itself is a real-valued smooth function.

Observe that f is unique. To see why, assume that there exists g 2 OX(U)
such that for all i 2 I, resUVi

(g) = fi. Since res
U
Vi
(f) = fi for all i 2 I as

well, we can use the locality axiom proved in part (a) to deduce that f = g.
Hence, f must be unique.

Therefore, OX defines a sheaf on X and as a result, (X, ⌧,OX) is a ringed
space.

Since S
2 is a smooth 2-manifold, we can apply 0.2.3 to deduce that

(S2
, ⌧S2 ,OS2) is a ringed space, where ⌧S2 is the manifold topology on S

2

and OS2 is the presheaf on S
2, as depicted in 0.2.2 and 0.2.3.

Part (a): Assume that W ✓ S
2 is open and that f : W ! R is smooth.

Assume that W 0 ✓ W is also an open set. Applying 0.2.1, we find that the
restriction f |W 0 : W 0 ! R is also a smooth function. That is,
f |W 0 2 C

1(W 0).

Part (b): Since (S2
, ⌧S2 ,OS2) is a ringed space by 0.2.3, it must

automatically satisfy the gluing axiom.
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0.3 Question 3 (L3-13)

Lemma 0.3.1 (Laplacian on S
2). Let f : R3 ! R be a smooth function.

Then, on R3 � {0},

�f =
1

r2

@

@r
(r2

@f

@r
) +

1

r2
�S2f.

Proof. Assume that f : R3 ! R is a smooth function. Then, the usual
Laplacian on f is given by

�f =
@
2
f

@x2
+

@
2
f

@y2
+

@
2
f

@z2
.

We will make the substitutions to spherical coordinates:

1. x = r sin ✓ cos�

2. y = r sin ✓ sin�

3. z = r cos ✓

where ✓ 2 [0, ⇡], � 2 [0, 2⇡] and r > 0. Operating within spherical
coordinates, we will derive an expression for the Laplacian. First, we need
to understand how to work in spherical coordinates.

Let the vector v = (x, y, z) = (r sin ✓ cos�, r sin ✓ sin�, r cos ✓) in R3.
Denote the three unit vectors in spherical coordinates by er, e✓ and e�.
They are defined by the equations

@v

@r
= hrer,

@v

@✓
= h✓e✓ and

@v

@�
= h�e�.

where hr, h✓ and h� are scale factors. By di↵erentiating the position vector
v, we find that

hr = 1, er = (sin ✓ cos�, sin ✓ sin�, cos ✓)

h✓ = r, e✓ = (cos ✓ cos�, cos ✓ sin�,� sin ✓)

and

h� = r sin ✓, e� = (� sin�, cos�, 0).

By using the usual dot product on R3, we find that
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er · e✓ = er · e� = e✓ · e� = 0.

Thus, spherical coordinates is an orthogonal coordinate system in R3. Now,
we will derive the gradient r and the divergence operators in spherical
coordinates.

Suppose that f : S2(r) ! R is a smooth function in spherical coordinates,
where S

2(r) denotes the sphere centred at the origin of radius r 2 (0,1).
Let rf = frer + f✓e✓ + f�e�. We will find the component functions fr, f✓
and f�. Our starting point is the chain rule. In spherical coordinates,

df =
@f

@r
dr +

@f

@✓
d✓ +

@f

@�
d�.

But,

df =
@f

@x
dx+

@f

@y
dy +

@f

@z
dz

= rf · (dx, dy, dz)
= (frer + f✓e✓ + f�e�) · dv

= (frer + f✓e✓ + f�e�) · (
@v

@r
dr +

@v

@✓
d✓ +

@v

@�
d�)

= (frer + f✓e✓ + f�e�) · (hrerdr + h✓e✓d✓ + h�e�d�)

= hrfrdr + h✓f✓d✓ + h�f�d�.

By comparing coe�cients, we deduce the following set of equations:

fr =
1

hr

@f

@r
, f✓ =

1

h✓

@f

@✓
and f� =

1

h�

@f

@�
.

Therefore, the gradient operator in spherical coordinates is

rf =
@f

@r
er +

1

r

@f

@✓
e✓ +

1

r sin ✓

@f

@�
e�.

Next, we need the divergence. Let A = A1er + A2e✓ + A3e� denote a
smooth vector field. We require a few properties before we proceed with the
calculation. The first of these is the cross products

er ⇥ e✓ = e�, er ⇥ e� = �e✓ and e✓ ⇥ e� = er.
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These can be verified by direct calculation. The next property is the
linearity of the divergence operator:

r · A = r · A1er +r · A2e✓ +r · A3e�.

By linearity, we will first compute r · (A1er). This becomes

r · (A1er) = r · (A1h2h3[
e✓

h2
⇥ e�

h3
])

= r(A1h2h3) · (
e✓

h2
⇥ e�

h3
) + A1h2h3r · [ e✓

h2
⇥ e�

h3
]

= r(A1h2h3) · (
e✓

h2
⇥ e�

h3
)

=
1

h2h3
er ·r(A1h2h3)

=
1

h1h2h3

@

@r
(A1h2h3).

In the above computation, we used the fact that for any two smooth
functions f and g,

r · (rf ⇥rg) = 0.

By doing similar computations for r · (A2e✓) and r · (A3e�) and adding our
results together, we find that the divergence of a smooth vector field is

r · A =
1

r2 sin ✓
(
@

@r
(A1r

2 sin ✓) +
@

@✓
(A2r sin ✓) +

@

@�
(A3r))

Now, we can finally compute the Laplacian as follows:

�f = r · (rf)

= r · (@f
@r

er +
1

r

@f

@✓
e✓ +

1

r sin ✓

@f

@�
e�)

=
1

r2 sin ✓
(
@

@r
(
@f

@r
r
2 sin ✓) +

@

@✓
(
1

r

@f

@✓
r sin ✓) +

@

@�
(

1

r sin ✓

@f

@�
r)).

The above expression can be written more simply as

�f =
1

r2 sin ✓
(
@

@r
(r2 sin ✓

@f

@r
) +

@

@✓
(sin ✓

@f

@✓
) +

@

@�
(

1

sin ✓

@f

@�
)).

We can further simplify the above equation as follows:
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�f =
1

r2 sin ✓
(
@

@r
(r2 sin ✓

@f

@r
) +

@

@✓
(sin ✓

@f

@✓
) +

@

@�
(

1

sin ✓

@f

@�
))

=
1

r2 sin ✓
(sin ✓[r2

@
2
f

@r2
+ 2r

@f

@r
] +

@

@✓
(sin ✓

@f

@✓
) +

1

sin ✓

@
2
f

@�2
)

=
@
2
f

@r2
+

2

r

@f

@r
+

1

r2
[

1

sin ✓

@

@✓
(sin ✓

@f

@✓
) +

1

sin2
✓

@
2
f

@�2
]

=
@
2
f

@r2
+

2

r

@f

@r
+

1

r2
�S2f

=
1

r2

@

@r
(r2

@f

@r
) +

1

r2
�S2f.

Note that this holds on R3\{0} since r > 0.
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0.4 Question 4 (L4-4)

Part (a): We will state the question asked in part (a) as a lemma below.

Lemma 0.4.1. Let f : U ! EndC(V ) be a function, where U ✓ Rn is open
and V is a C-vector space with dimension d. Let � be a basis for V . Then,
f is smooth with respect to � if and only if it is smooth with respect to any
basis for V .

Proof. Assume that U and V are defined as above. Assume that � is a
basis for V . Assume that f is defined as above. Note that if f is smooth
with respect to any basis for V , then it must be smooth with respect to �.
It su�ces to prove the converse of this statement.

To show: (a) If f is smooth with respect to the basis �, then it is smooth
with respect to any basis.

(a) Assume that f is smooth with respect to the basis �. Then, the
following composite must be smooth:

U EndC(V ) Md⇥d(C) Cd2f C� ⇠=

Let [C]↵� denote the change of basis matrix from � to the basis ↵.
Furthermore, let ⇠↵ : Md⇥d(C) ! Md⇥d(C) be the map defined by

⇠↵(A) = [C]↵�A([C]↵�)
�1

Then, consider the following composite:

U EndC(V ) Md⇥d(C) Md⇥d(C) Cd2f C� ⇠↵ ⇠=

The e↵ect of this composite is to write the matrix representation of f(u) in
terms of the basis ↵, for all u 2 U . In order to show that the composite
above is smooth, it su�ces to show that ⇠↵ is a smooth map. Assume that
A 2 Md⇥d(C) so that

⇠↵ = [C]↵�A([C]↵�)
�1
.

By identifying Md⇥d(C) with Cd2 , we observe that due to the matrix
multiplication in ⇠↵, every entry of [C]↵�A([C]↵�)

�1 is a polynomial of the
entries in A. Since polynomials are smooth functions, we deduce that ⇠↵
must be a smooth function for all bases ↵ of V . So, the above composite
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must be smooth, as it is a composite of smooth maps. Hence, f is smooth
with respect to any basis ↵ of V .

Part (b): Our proof of the statement in part (b) will use the Leibnitz rule,
which was asked in part (d).

Lemma 0.4.2. Let U ✓ Rn be an open set. Let � be a basis for V . For all
i 2 {1, . . . , n} we define the C-linear operator @/@xi on C

1(U,EndC(V )) to
be the following composite:

C
1(U,EndC(V )) C

1(U,Md⇥d(C)) C
1(U,Md⇥d(C))

C
1(U,EndC(V ))

C��(�)
@

@xi

C�1
� �(�)

The operator @/@xi acts on the matrices entry-wise. If f : U ! Md⇥d(C) is
identified with the matrix (f(u))j,k, then the derivative is the matrix

(
@f(u)

@xi
)j,k.

This operator is independent of the choice of basis � of V .

Proof. Assume that @/@xi is defined as above. Let ↵ be another basis for
V . We must show that the composite

C
1(U,EndC(V )) C

1(U,Md⇥d(C)) C
1(U,Md⇥d(C))

C
1(U,EndC(V ))

C↵�(�)
@

@xi

C�1
↵ �(�)

gives the same result as the previous composite with basis �.

To show: (a) For all bases ↵ of V , @/@xi must satisfy the Leibnitz rule. For
all f, g 2 C

1(U,EndC(V )),

@

@xi
(fg) =

@f

@xi
g + f

@g

@xi
.
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(a) Assume that u 2 U . Suppose that [f(u)]↵, [g(u)]↵ 2 Md⇥d(C) are the
matrices of f(u) and g(u) respectively. That is, C↵(f(u)) = [f(u)]↵ and
C↵(g(u)) = [g(u)]↵. Then, the matrix associated to (fg)(u) = f(u) � g(u) is
the product [f(u)]↵[g(u)]↵. The jk entry of this matrix product is

dX

l=1

([f(u)]↵)jl([g(u)]↵)lk.

Note that ([f(u)]↵)jl, ([g(u)]↵)lk 2 C for all j, k, l 2 {1, . . . , d}. Thus, when
we di↵erentiate the above expression, the Leibnitz rule applies, resulting in
the following expression (in tandem with C-linearity of @/@xi):

dX

l=1

@

@xi
(([f(u)]↵)jl)([g(u)]↵)lk + ([f(u)]↵)jl

@

@xi
(([g(u)]↵)lk).

Recognising the above expression as the sum of two products of two
matrices, we can rewrite it as

@[f(u)]↵
@xi

[g(u)]↵ + [f(u)]↵
@[g(u)]↵

@xi

Finally, when we apply C
�1
↵ , we obtain the smooth function

@f(u)

@xi
g(u) + f(u)

@g(u)

@xi
.

Therefore,

@f(u)

@xi
g(u) + f(u)

@g(u)

@xi
=

@

@xi
((fg)(u)).

Since this holds for an arbitrary u 2 U , we deduce that for all bases ↵ of V ,

@

@xi
(fg) =

@f

@xi
g + f

@g

@xi
.

Now we return to our original problem. Once again assume that u 2 U and
f 2 C

1(U,EndC(V )). Then, the matrix of f(u) with respect to the basis ↵
can be expressed as

C↵(f(u)) = [f(u)]↵ = [C]↵� [f(u)]�([C]↵�)
�1
.

Note that this means that

f(u) = C
�1
↵ ([C]↵� [f(u)]�([C]↵�)

�1). (1)

16



Applying @/@xi in conjunction with the Leibnitz rule proved in part (a), we
deduce that

@

@xi
([f(u)]↵) =

@

@xi
([C]↵� [f(u)]�([C]↵�)

�1)

=
@

@xi
([C]↵� [f(u)]�)([C]↵�)

�1 + [C]↵� [f(u)]�
@

@xi
(([C]↵�)

�1) (Leibnitz Rule)

=
@

@xi
([C]↵� [f(u)]�)([C]↵�)

�1

= (
@

@xi
([C]↵�)[f(u)]� + [C]↵�

@

@xi
([f(u)]�)])([C]↵�)

�1 (Leibnitz Rule)

= [C]↵�
@

@xi
([f(u)]�)([C]↵�)

�1
.

In the above calculation, we have repeatedly used the fact that the change
of basis matrices [C]↵� and ([C]↵�)

�1 have constant entries. Thus, their
derivatives are equal to the zero matrix. Now, we can apply C

�1
↵ to get

C
�1
↵ (

@

@xi
([f(u)]↵)) = C

�1
↵ ([C]↵�

@

@xi
([f(u)]�)([C]↵�)

�1)

=
@f(u)

@xi
(From 1)

= C
�1
� (

@

@xi
([f(u)]�)).

Since this holds for all u 2 U , we deduce from the above equality that the
two composites for ↵ and � are equal. So, @/@xi is independent of the
choice of basis for V .

To reiterate, we have proved the statements in both parts (b) and (d) in
the proof above.

Part (c): Here is statement we are required to prove.

Lemma 0.4.3. Let U ✓ Rn be open and EndC(V ) denote the C-vector
space of linear operators on a finite-dimensional C-vector space V . Let
C

1(U,EndC(V )) denote the space of smooth functions f : U ! EndC(V ).
Then, C1(U,EndC(V )) is a C-algebra, with (fg)(u) = f(u) � g(u).

17



Proof. Assume that U is an open subset of Rn, V is a finite-dimensional
C-vector space and EndC(V ) is the C-vector space of linear operators on V .
Suppose that V has dimension d.

To show: (a) For all f, g, h 2 C
1(U,EndC(V )), f(gh) = (fg)h.

(b) There exists a function 1 2 C
1(U,EndC(V )) such that 1f = f1 = f for

all f 2 C
1(U,EndC(V )).

(c) For all f, g, h 2 C
1(U,EndC(V )), f(g + h) = fg + fh.

(d) For all f, g, h 2 C
1(U,EndC(V )), (g + h)f = gf + hf .

(e) For all f, g 2 C
1(U,EndC(V )) and � 2 C, (�f)g = f(�g) = �fg.

(f) C1(U,EndC(V )) is a vector space with addition and scalar
multiplication.

(a) Assume that f, g, h 2 C
1(U,EndC(V )). Then, a quick calculation

shows that for all u 2 U and v 2 V ,

f(gh)(u)(v) = (f(u) � (gh)(u))(v)
= f(u)((gh)(u)(v))

= f(u)((g(u) � h(u))(v))
= f(u)(g(u)(h(u)(v)))

= (f(u) � g(u))(h(u)(v))
= ((fg)(u) � h(u))(v)
= (fg)h(u)(v).

So, f(gh) = (fg)h.

(b) Define the function 1 : U ! EndC(V ) which sends u 2 U to idV , where
idV is the identity map on V . To see that 1 is a smooth function, pick an
ordered basis � of V and consider the composite � defined below:

U EndC(V ) Md⇥d(C) Cd21 C� ⇠=

This composite sends any u 2 U to the d⇥ d identity matrix Id. Hence, �
is smooth because each component function of � is a constant (since all of

18



the entries of Id are constant) and is thus, smooth. Furthermore, for all
u 2 U and v 2 V ,

(1f)(u)(v) = (1(u) � f(u))(v) = (idV � f(u))(v) = f(u)(v)

and

(f1)(u)(v) = (f(u) � idV )(v) = f(u)(v).

This shows that f1 = 1f = f for all f 2 C
1(U,EndC(V )).

(c) We compute for all u 2 U and v 2 V as follows:

f(g + h)(u)(v) = (f(u) � (g + h)(u))(v)

= f(u)((g + h)(u)(v))

= f(u)(g(u)(v) + h(u)(v))

= f(u)(g(u)(v)) + f(u)(h(u)(v)) since f is a linear operator

= (f(u) � g(u))(v) + (f(u) � h(u))(v)
= ((f � g) + (f � h))(u)(v).

So, f(g + h) = fg + fh.

(d) We compute for all u 2 U and v 2 V as follows:

(g + h)f(u)(v) = ((g + h)(u) � f(u))(v)
= (g + h)(u)(f(u)(v))

= g(u)(f(u)(v)) + h(u)(f(u)(v))

= (g(u) � f(u))(v) + (h(u) � f(u))(v)
= (gf + hf)(u)(v).

Therefore, (g + h)f = gf + hf .

(e) Assume that � 2 C. Then, we compute for all u 2 U and v 2 V ,
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(�f)g(u)(v) = ((�f)(u) � g(u))(v)
= (�f)(u)(g(u)(v))

= �f(u)(g(u)(v))

= �(f(u) � g(u))(v)
= �fg(u)(v)

and

f(�g)(u)(v) = (f(u) � (�g)(u))(v)
= f(u)((�g)(u)(v))

= f(u)(�g(u)(v))

= �f(u)(g(u)(v))

= �(f(u) � g(u))(v)
= �fg(u)(v).

So, (�f)g = f(�g) = �fg.

(f) To see that C1(U,EndC(V )) is a vector space, we first note that it is
closed under addition and scalar multiplication since adding two smooth
functions results in a smooth function and multiplying a smooth function
by a scalar results in a smooth function. Since EndC(V ) is a C-vector
space, the vector space axioms must be satisfied for f(u) for all u 2 U and
f 2 C

1(U,EndC(V )). Since these results hold for all u 2 U , it must hold
for all f . So, C1(U,EndC(V )) must be a C-vector space.

Thus, C1(U,EndC(V )) is a C-algebra.

Part (e): The problem asked here is stated and proved below:

Lemma 0.4.4. Let V be a C-vector space with dimV = d. Let
f 2 C

1(U,EndC(V )), where U is an open subset of Rn. Then, the functions
u 7! Tr(f(u)) and u 7! det(f(u)) are also smooth functions from U to C.

Proof. Assume that V is a C-vector space with dimV = d. Assume that
U ✓ Rn is open and f 2 C

1(U,EndC(V )). Recall that this means that the
composite
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U EndC(V ) Md⇥d(C) Cd2f C� ⇠=

is smooth for any basis � of V . For the basis � of V , we define the trace
function T� : U ! C to be the composite

U EndC(V ) Md⇥d(C) C.f C� Tr

Similarly, we define the determinant function D� : U ! C to be the
composite

U EndC(V ) Md⇥d(C) C.f C� det

We will first show that the functions T� and D� are independent of the
choice of basis for V .

To show: (a) If ↵ and � are two di↵erent choices of basis for V , then
T� = T↵.

(b) If ↵ and � are two di↵erent choices of basis for V , then D� = D↵.

(a) Assume that ↵ is another basis for V and that T↵ is the composite
below:

U EndC(V ) Md⇥d(C) C.f C↵ Tr

We must show that for all u 2 U , T�(u) = T↵(u). Using the composite, the
LHS evaluates as T�(u) = Tr([f(u)]�). The RHS evaluates as

T↵(u) = Tr([f(u)]↵) = Tr([C]↵� [f(u)]�([C]↵�)
�1).

We will require the preliminary result below in order to proceed further.

To show: (aa) If A,B 2 Md⇥d(C), then Tr(AB) = Tr(BA).

(aa) Assume that A,B 2 Md⇥d(C). Let A = (aij) and B = (bij). Then,

Tr(AB) =
dX

i=1

dX

k=1

aikbki.

We can exploit the commutativity of addition and multiplication in C in
order to rewrite the above expression as
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Tr(AB) =
dX

i=1

dX

k=1

aikbki

=
dX

i=1

dX

k=1

bkiaik

=
dX

i=1

(b1iai1 + · · ·+ bdiaid)

= (b11a11 + · · ·+ bd1a1d) + (b12a21 + · · ·+ bd2a2d) + · · ·+ (b1dad1 + · · ·+ bddadd)

= (b11a11 + b12a21 + · · ·+ b1dad1) + · · ·+ (bd1a1d + bd2a2d + · · ·+ bddadd)

=
dX

k=1

dX

i=1

bkiaik

= Tr(BA).

So, Tr(AB) = Tr(BA).

(a) Now, we can use the result in part (aa) to deduce that

T↵(u) = Tr([C]↵� [f(u)]�([C]↵�)
�1)

= Tr(([C]↵� [f(u)]�)([C]↵�)
�1)

= Tr(([C]↵�)
�1([C]↵� [f(u)]�)) (Part (aa))

= Tr([f(u)]�)

= T�(u).

Since u 2 U was arbitrary, we deduce that T↵ = T�.

(b) From the definition, D↵ : U ! C is the composite

U EndC(V ) Md⇥d(C) C.f C↵ det

We want to show that for all u 2 U , D�(u) = D↵(u). Applying the
appropriate composite, the LHS is det([f(u)]�), whereas the RHS is

D↵(u) = det([f(u)]↵) = det([C]↵� [f(u)]�([C]↵�)
�1).
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However, by the multiplicative property of the determinant,

D↵(u) = det([C]↵� [f(u)]�([C]↵�)
�1)

= det([C]↵�) det([f(u)]�) det(([C]↵�)
�1))

= det([C]↵�) det(([C]↵�)
�1)) det([f(u)]�)

= det([f(u)]�)

= D�(u).

Since u 2 U was arbitrary, we deduce that D↵ = D�.

Because the definitions of D� and T� are independent of the choice of basis
� for V , we will now call these composites D and T .

To show: (c) D is a smooth function.

(d) T is a smooth function.

(c) From the definition of D, it su�ces to show that the determinant map
det : Md⇥d(C) ! C is smooth. First, we identify Md⇥d(C) with Cd2 . Then,
for all A 2 Cd2 , det(A) is a polynomial of the entries in A. Since
polynomials are smooth, det : Cd2 ! C must be a smooth function.
Returning to the definition of D as the composite

U EndC(V ) Md⇥d(C) Cf C� det

we observe that since f is smooth, the composite C� � f : U ! Cd2 must be
smooth. So, D is the composite of smooth maps and is thus, smooth.

(d) Correspondingly to part (c), it su�ces to show that the trace map
Tr : Md⇥d(C) ! C is smooth. But, for all A 2 Md⇥d(C) ⇠= Cd2 , Tr(A) is a
polynomial of the entries in A. Since polynomials are smooth,
Tr : Cd2 ! C must be a smooth function. Hence, T : U ! C is a smooth
function because it is the composite of the smooth maps C� � f and Tr:

U EndC(V ) Md⇥d(C) Cf C� Tr
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0.5 Question 5 (L4-6)

We are given the equation

1 = ⇢(Rx
2⇡) = exp(2⇡[x2

@

@x3
� x3

@

@x2
]).

Recall that the expression x2
@

@x3
� x3

@
@x2

appeared as an infinitesimal
generator of the symmetry ⇢(Rx

↵). It was found in lectures that

d

d↵
(⇢(Rx

↵))|↵=0 = x2
@

@x3
� x3

@

@x2
.

Since ⇢(Rx
2⇡) is the identity operator on Pk(3), denoted by 1 in the first

equation, we would like to identify ⇢(Rx
2⇡) with the 3⇥ 3 identity matrix in

SO(3), which we will denote by I.

In order to simplify the situation, we would also like to identify the
infinitesimal x2

@
@x3

� x3
@

@x2
with a 3⇥ 3 matrix. In order to do this, we will

repeat the derivation of this di↵erential operator, but with R
x
↵ rather than

its representation ⇢(Rx
↵):

d

d↵
(Rx

↵)|↵=0 =
d

d↵

0

@
1

cos↵ � sin↵
sin↵ cos↵

1

A |↵=0

=

0

@
1

� sin↵ � cos↵
cos↵ � sin↵

1

A |↵=0

=

0

@
0 0 0
0 0 �1
0 1 0

1

A .

So, we can take the above matrix to be the 3⇥ 3 matrix representation of
x2

@
@x3

� x3
@

@x2
. Let

X =

0

@
0 0 0
0 0 �1
0 1 0

1

A .

The equation we originally have is equivalent to I = exp(2⇡X). The trick
to revealing the trigonometric identity underpinning this identity is to
realise that
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X
3 = �X

From this, we deduce that for all n 2 Z>0,

X
2n+2 = (�1)nX2 and X

2n+1 = (�1)nX.

Now, for a general ↵ 2 R, we argue as follows

⇢(Rx
↵) = exp(↵X)

=
1X

i=0

(↵X)i

i!

= I +
1X

i=1

(↵X)i

i!

= I +
1X

i=0

↵
2i+1

X
2i+1

(2i+ 1)!
+

1X

i=1

↵
2i
X

2i

(2i)!

= I +
1X

i=0

↵
2i+1(�1)iX

(2i+ 1)!
+

1X

i=1

↵
2i(�1)i+1

X
2

(2i)!

= I + sin(↵)X + (1� cos(↵))X2
.

By substituting ↵ = 2⇡, we recover the original matrix identity
I = exp(2⇡X).
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0.6 Question 6 (L4-8)

Our first step is to understand the operators �(Rx
↵), �(R

y
↵) and �(Rz

↵) as
exponentials of di↵erential operators in Cartesian coordinates. We already
know from the lectures that

�(Rx
↵) = exp(↵[y

@

@z
� z

@

@y
])

as an operator on Hk(S2). Note that ↵ 2 R. We will derive the analogous
expressions for �(Ry

↵) and �(Rz
↵).

Consider the operator ⇢(Ry
↵) : Pk(3) ! Pk(3). Let {x� | |�| = k} be a

C-basis for Pk(3). The derivative of the operator with respect to ↵ can be
computed as

d

d↵
(⇢(Ry

↵))(x
�) =

d

d↵
('Ry

↵
(x�))

=
d

d↵
[(x1 cos↵ + x3 sin↵)

�1x
�2
2 (�x1 sin↵ + x3 cos↵)

�3 ]

= (�x1 sin↵ + x3 cos↵)�1(x1 cos↵ + x3 sin↵)
�1�1

x
�2
2 (�x1 sin↵ + x3 cos↵)

�3

+(x1 cos↵ + x3 sin↵)
�1 [x�2

2 (�x1 cos↵� x3 sin↵)

�3(�x1 sin↵ + x3 cos↵)
�3�1]

= �1x
�2
2 (x1 cos↵ + x3 sin↵)

�1�1(�x1 sin↵ + x3 cos↵)
�3+1

��3x
�2
2 (�x1 sin↵ + x3 cos↵)

�3�1(x1 cos↵ + x3 sin↵)
�1+1

= 'Ry
↵
([x3

@

@x1
� x1

@

@x3
](x�))

Hence,

d

d↵
(⇢(Ry

↵)) = ⇢(Ry
↵) � [x3

@

@x1
� x1

@

@x3
].

Utilising a similar procedure to the lectures and then transferring over to
the operator �(Ry

↵) on Hk(S2), we obtain

�(Ry
↵) = exp(↵[z

@

@x
� x

@

@z
]).

Here, we map x1 to x, x2 to y and x3 to z. The derivation of the
exponential expression for �(Rz

↵) is very similar. First, we compute that
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d

d↵
(⇢(Rz

↵))(x
�) =

d

d↵
('Rz

↵
(x�))

=
d

d↵
[(x1 cos↵� x2 sin↵)

�1(x1 sin↵ + x2 cos↵)
�2x

�3
3 ]

= (�x1 sin↵� x2 cos↵)�1(x1 cos↵� x2 sin↵)
�1�1(x1 sin↵ + x2 cos↵)

�2x
�3
3

+(x1 cos↵� x2 sin↵)
�1x

�3
3 �2(x1 cos↵� x2 sin↵)(x1 sin↵ + x2 cos↵)

�2�1

= ��1x
�3
3 (x1 cos↵� x2 sin↵)

�1�1(x1 sin↵ + x2 cos↵)
�2+1

+�2x
�3
3 (x1 cos↵� x2 sin↵)

�1+1(x1 sin↵ + x2 cos↵)
�2�1

= 'Rz
↵
([x1

@

@x2
� x2

@

@x1
](x�)).

Therefore,

�(Rz
↵) = exp(↵[x

@

@y
� y

@

@x
]).

Now, we will covert all of the Cartesian di↵erential operators to di↵erential
operators in spherical coordinates. First, express the conversion of
Cartesian coordinates to spherical coordinates as matrices:

0

@
x

y

z

1

A =

0

@
r cos� sin ✓
r sin� sin ✓

r cos ✓

1

A .

Here � 2 [0, 2⇡] and ✓ 2 [0, ⇡]. We can use the chain rule to express the
matrix [dx, dy, dz]T as

0

@
dx

dy

dz

1

A =

0

@
cos� sin ✓dr + r cos� cos ✓d✓ � r sin� sin ✓d�
sin� sin ✓dr + r sin� cos ✓d✓ + r cos� sin ✓d�

cos ✓dr � r sin ✓d✓

1

A .

=

0

@
cos� sin ✓ r cos� cos ✓ �r sin� sin ✓
sin� sin ✓ r sin� cos ✓ r cos� sin ✓

cos ✓ �r sin ✓ 0

1

A

0

@
dr

d✓

d�

1

A

We can invert this matrix to solve for [dr, d✓, d�]T :

0

@
dr

d✓

d�

1

A =

0

@
cos� sin ✓ sin ✓ sin� cos ✓
cos ✓ cos�

r
sin� cos ✓

r � sin ✓
r

� sin�
r sin ✓

cos�
r sin ✓ 0

1

A

0

@
dx

dy

dz

1

A .

By reading o↵ the columns of the square matrix, we deduce that
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@

@x
= cos� sin ✓

@

@r
+

cos ✓ cos�

r

@

@✓
� sin�

r sin ✓

@

@�

@

@y
= sin ✓ sin�

@

@r
+

sin� cos ✓

r

@

@✓
+

cos�

r sin ✓

@

@�

and

@

@z
= cos ✓

@

@r
� sin ✓

r

@

@✓
.

It remains to substitute the above expressions and the spherical coordinates
for x, y and z into our expressions for �(Rx

↵), �(R
y
↵) and �(Rz

↵). Once we do
this, we obtain the following:

�(Rx
↵) = exp(↵[� sin�

@

@✓
� cos� cot ✓

@

@�
])

�(Ry
↵) = exp(↵[cos�

@

@✓
� sin� cot ✓

@

@�
])

and

�(Rz
↵) = exp(↵

@

@�
).

Now we will turn to the general case and write a formula for �(Rbn
↵) as an

exponential, where bn 2 S
2 is an arbitrary unit vector. In order to do this,

we will modify spherical coordinates so that bn plays the role of the x axis in
usual spherical coordinates.

Recall that in Pk(3), if bn = R
z
'R

y
⌘�⇡/2(e1), then the variables (t1, t2, t3) are

related to (x1, x2, x3) by

0

@
t1

t2

t3

1

A = R
z
'R

y
⌘�⇡/2

0

@
x1

x2

x3

1

A .

Here, ' 2 [0, 2⇡] and ⌘ 2 [0, ⇡]. If we were to create spherical coordinates
where bn plays the role of the x axis, then we expect the variable r to
remain unchanged (since rotations are isometric), whereas the angles ✓ and
� in usual spherical coordinates are o↵set by angles of ⌘ � ⇡/2 and '

respectively. Define

1. x
0 = r sin(✓0 + ⌘ � ⇡

2 ) cos(�
0 + ') = �r cos(✓0 + ⌘) cos(�0 + ')
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2. y
0 = r sin(✓0 + ⌘ � ⇡

2 ) sin(�
0 + ') = �r cos(✓0 + ⌘) sin(�0 + ')

3. z
0 = r cos(✓0 + ⌘ � ⇡

2 ) = r sin(✓0 + ⌘)

where ✓
0 2 [0, ⇡] and �

0 2 [0, 2⇡]. As a consistency check, if we substitute
r = 1, ✓0 = ⇡/2 and �

0 = 0 into the above coordinates, we obtain

0

@
x
0

y
0

z
0

1

A =

0

@
sin ⌘ cos'
sin ⌘ sin'

cos ⌘

1

A = R
z
'R

y
⌘�⇡/2(e1) = bn.

Thus, in our new coordinate system, bn is the new x axis, which is what we
want. By converting from an operator in Pk(3) to an operator in Hk(S2),
we deduce that

�(Rbn
↵) = exp(↵[y0

@

@z0
� z

0 @

@y0
])

where under the isomorphism from Hk(3) to Hk(S2), t1 7! x
0, t2 7! y

0 and
t3 7! z

0. It remains to write the di↵erential operators @
@z0 and

@
@y0 in our new

spherical coordinate system. We will approach this in a similar manner to
the previous case.

By the chain rule,

0

@
dx

0

dy
0

dz
0

1

A =

0

@
� cos(✓0 + ⌘) cos(�0 + ') r sin(✓0 + ⌘) cos(�0 + ') r cos(✓0 + ⌘) sin(�0 + ')
� cos(✓0 + ⌘) sin(�0 + ') r sin(✓0 + ⌘) sin(�0 + ') �r cos(✓0 + ⌘) cos(�0 + ')

sin(✓0 + ⌘) r cos(✓0 + ⌘) 0

1

A

·

0

@
dr

d✓
0

d�
0

1

A .

Inverting the Jacobian again, we find that

@

@x0 = � cos('+�
0) cos(✓0+⌘)

@

@r
+
cos('+ �

0) sin(✓0 + ⌘)

r

@

@✓0
+

sin('+ �
0)

r cos(✓0 + ⌘)

@

@�0

@

@y0
= � sin('+�

0) cos(✓0+⌘)
@

@r
+
sin('+ �

0) sin(✓0 + ⌘)

r

@

@✓0
� cos('+ �

0)

r cos(✓0 + ⌘)

@

@�0

and
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@

@z0
= sin(✓0 + ⌘)

@

@r
+

cos(✓0 + ⌘)

r

@

@✓0
.

By making the appropriate substitutions, we obtain

y
0 @

@z0
� z

0 @

@y0
= � sin(�0 + ')

@

@✓0
+ cos(�0 + ') tan(✓0 + ⌘)

@

@�0 .

Hence,

�(Rbn
↵) = exp(↵[cos(�0 + ') tan(✓0 + ⌘)

@

@�0 � sin(�0 + ')
@

@✓0
]).
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