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0.1 Question 1 (L3-6)
Part (i): We state and prove the lemma below:

Lemma 0.1.1. Define the function ® : S? x [0,27) — SO(3), which sends
(7, ) to the matriz RY. Then, ® is surjective and continuous.

Proof. Suppose that ® is defined above. The goal is to show that every
element of SO(3) can be expressed as a rotation R” for some o € R and
ne s’

To show: (a) For all A € SO(3), A = R? for some a € R and 7 € R®.
(a) Assume that A € SO(3). We claim that 1 is an eigenvalue of A.
To show: (aa) 1 is an eigenvalue of A.

(aa) Let A\; € C be an eigenvalue of A. Let f: R?* — R? be the function
whose associated matrix is A. Since A € SO(3), f must preserve the
complex inner product. Let u € R3 be an eigenvector of A, with eigenvalue

A1. Then,

(u,u) = (f(u), f(u) = (Au, u) = [As[*(u, w).

So, |A1] = 1. Let Ay and A3 denote the other two eigenvalues of A. By the
above reasoning, they must also have magnitude 1. We now have the
following two cases:

Case 1: All the eigenvalues are real.

Recall that 1 = det(A) = A AaAs. If A1, Ao, A3 € R, then either all of the
eigenvalues are 1 or exactly two of them are —1, which renders the last
eigenvalue 1. Thus, 1 is an eigenvalue of A in this case.

Case 2: At least one of the eigenvalues are complex.

Since A is a 3 x 3 matrix with elements in R, its characteristic polynomial
ca(X) must be a degree 3 polynomial with real coefficients. Suppose
without loss of generality that A\; € C with non-zero imaginary part. Since
the eigenvalues of A are roots of the real polynomial c4(X), we deduce that
another eigenvalue Ay of A must satisfy Ay = 1. Hence,



1= det(A) = )\1)\_1/\3 = |)\1|2)\3 = )\3.

Once again, 1 = A3 is an eigenvalue of A. Since we have exhausted all
possible cases, we can finally deduce that 1 is an eigenvalue of A € SO(3).

(a) Since 1 is an eigenvalue, there exists a non-zero vector v; € R? such that
Avy = v. By dividing both sides by the norm of v;, we can assume without
loss of generality that v; is a unit vector in the unit sphere S?. Take two
other vectors vy, v3 € R3. We can use the Gram-Schmidt procedure to
obtain an orthonormal basis {vy, U3, U3} of R3. Now consider the 3 x 3
matrix B = [vy, 2, U3). Since the columns of B form an orthonormal basis,
B must be an orthogonal matrix. By permuting the second and third
columns, we can assume that det(B) = 1 and thus, that B € SO(3).

Now, we compute the matrix A with respect to our new orthonormal basis
{v1, U2, v3}. First consider the vector subspace span(v;). It orthogonal
complement is given by

(span(vy))t = {v € R* | v - v, = 0} = span(vy, U3).
Our second observation is that since SO(3) is a group, the matrix product
AB = [Avy, A¥y, A¥3] = [v1, AT, AT3] € SO(3). As a result of this, the
vectors Aty, Avz € (span(vy))t = span(v, U3), since the columns of AB
form an orthonormal basis of R3. Hence, we can write Aty = at, 4+ by and
Avg = ¢y + dvs for some a,b,c,d € R.

Using this information, we can now write the matrix A with respect to our
constructed orthonormal basis {vy, U3, U3}. We find that

1
B 'AB = a b
c d

Since A, B € SO(3), the above matrix is also in SO(3), revealing that the

submatrix
a b cos —sinf
(c d) - (sin@ cos 6 ) € 50(2)

for some 6 € R. So, B"'AB = Rj. Therefore, A= BRB~'. Due to the
change of basis induced by the matrix B € SO(3) (notably, it sends the
x-axis to vy1), we can interpret A as a rotation by 6 about an axis in the



direction of vy. Therefore, A = Ry'. Hence, every matrix in SO(3) is a
rotation matrix. In particular, every matrix in SO(3) is a rotation matrix
whose axis of rotation is the eigenvector with eigenvalue 1.

(a) Now assume that C' € SO(3). Then, from part (aa), there exists

0 € [0,27) and @ € S? such that C' = RY. Consequently,

®(w,0) = RY = C, revealing that ® is surjective. To see that it is
continuous, we first identify the set of 3 x 3 matrices M3y 3(R) with R? (this
is by “reading off” the elements of a matrix). Take ®(z,7) = Rf]. Note that
the entries of the matrix Ri are linear combinations of trigonometric
functions, which are continuous. Since all of the component functions of ¢
are continuous in this case, we deduce that ® must also be a continuous
function.

Part (ii): Assume that R} and R are rotation matrices in SO(3).
Assume that ~ was defined as above. In order to give an explicit
description of ~ on the set 5% x [0, 2), it suffices to know when R = R}
The claim here is that

To show: (a) If R} = R}, where o, § € [0,27) and i, m € S?, then the
following three cases are possible:

(a) Assume that R = RY', with o, § € [0,27) and 7, m € S?. Then,
I = Rg_l ?, where [ is the 3 x 3 identity matrix. Recall from the previous

result that R? has an eigenvalue of 1, with corresponding eigenvector m.
By applying this, we obtain

-1 m F-1
o~ ooa=lomo -l
m=1Im=R, Rgm=R;, m.

Thus, m is also an eigenvector of Rz_l with eigenvalue 1. But,

Rg_l = R™ . Again, the previous result shows that for all a € [0,27), 7 is
an eigenvector with eigenvalue 1, just like m.

Observe that for all rotation matrices R? € SO(3), if 1 is an eigenvalue
with multiplicity greater than 1, then all of the eigenvalues of R” are 1
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because det(R?) = 1. In this case, R must be the identity matrix I. So,
a = 0 for this to be true. Translating this back to the original scenario, we
deduce that o = g = 0.

For the other case, where the eigenvalue of 1 occurs with multiplicity 1 in
the matrix R” , then 7 is the rotation axis for R” . But, m is also an
eigenvector with eigenvalue 1. So, 7 is also an axis of rotation for R” .
This establishes that either m = 1 or m = —n. In the first case, we must
have a = f3 for RZ = R? to be true. For the second case, we similarly must
have a = —f.

Now we can explicity describe the relation ~ on 5% x [0,27). We say that
(n, @) ~ (m, B) if any one of the three conditions below are satisfied:

l.a=p=0.

2. m

nand o = f.

3. m=-nand o = —f.



0.2 Question 2 (L3B-2)

Fundamentally, this question is asking about a specific case of a ringed
space. The following results will make this remark precise.

Lemma 0.2.1 (Restriction of a smooth map). Let M be a smooth
n-manifold and W be an open subset of M, with respect to the manifold
topology on M. Let f: W — R be a smooth function. If W' is another open
subset of M such that W' C W, then the restriction f|w: : W' — R is also
a smooth function.

Proof. Assume that M is a smooth n-manifold with atlas {(U,, ¢.)}aer and
that W is an open subset of M, with respect to the manifold topology.
Assume that f: W — R is smooth. Then, for all w € W, there exists a
coordinate chart (Uy, ¢p) such that w € U, and f o cpb_l is smooth as a
function from ¢, (Uy) C R™ to R. We observe that its restriction

flw: W = R to the open set W' C W can be described by the following
composite:

We—-sw_-J14Rr

Here, the first arrow denotes the inclusion map ¢ : W' — W. Since the
composition of smooth functions is smooth, it suffices to show that ¢ is a
smooth function. Assume that w’ € W’. Since W’ C W, there exists a
coordinate chart (Uy, ) such that w’ € U, and the composite

oo (W' N U,) s W e—n W —2 (W N U,)

is the inclusion of the open set ¢, (W' N Uy) in (W N Uy). This is smooth
because each of the component functions of this composite is smooth (each
component function is the polynomial j(x) = ). Hence, the inclusion map
t: W' — W is smooth and consequently, f|y+ must also be smooth because
it is the composition of smooth functions.

]

Theorem 0.2.2 (Presheaf on a Smooth Manifold). Let (X, 1) be a
topological space, where X is a smooth n-manifold and T is the manifold
topology on X. Let € denote the category with open subsets of X as the
objects and inclusion maps i}, as the morphisms. The inclusion maps are

defined as follows: If U CV, then



iy (U) =V.

Then, there exists a contravariant functor Ox : € — Rng (Rng is the
category of rings) such that each open set U is mapped to the commutative
ring of real-valued smooth functions on U and each inclusion map is
mapped to restriction maps. More succinctly, for all open subsets U,V C X

such that U C 'V,

Ox(U)={f:U = R| f is smooth} and Ox(i};) = resy,

In turn, each restriction map resl; : Ox(V) — Ox(U) is defined as

resy(f) = flu.

Proof. Assume that X is a smooth n-manifold, 7 is the manifold topology
and (X, 7) is a topological space. Assume that € is the category of open
sets in X as defined above. Assume that Ox is the map between € and
Rng as described above.

To show: (a) If U € 0b(%), then Ox(U) € ob(Rng).
(b) Ox (1Y) = resY and resY is the identity morphism on Ox(U).
(¢) I U, V,W € 0b(€) with U CV C W, then, resly = res}; oresiy.

(a) This follows from our careful definition of Ox, since we map U to the
commutative ring of smooth real-valued functions on U (recall that sums
and products of smooth functions are indeed smooth).

(b) Assume that U € ob(%). Then, the inclusion map ¥, : U — U is the
identity morphism on U. From the definition of Ox, Ox (i) = resy. It
remains to show that res is the identity morphism defined on Ox (U).
But, for all f € Ox(U), resY(f) = flv = f. Hence, res is the identity
morphism of Ox(U).

(c) Assume that U, V,W € 0b(%¢) with U C V C W. Assume that
f € Ox(W). Then, resl¥ (f) = f|y. Furthermore, we observe that

(resy oresy )(f) = resy (resy (f)) = resy (flv) = flu = resy (f).

Therefore, res{y = res}; ores;’. We note that in the category €,

iy = 4\Y o4};, which means that under Oy, the order of composition of
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morphisms is reversed.

Therefore, Ox is a contravariant functor from % to Rng. This is called a
presheaf on the topological space (X, 7). O

Theorem 0.2.3 (Ringed Space on a Smooth Manifold). Let X be a smooth
n-manifold, T be the manifold topology on X and (X, T) be the resultant
topological space. Let Ox be the presheaf on X which was defined in [0.2.2.
Then, Ox is a sheaf on X and (X,7,0x) is a ringed space.

Proof. Assume that X is a smooth n-manifold, 7 is the manifold topology
on X and (X, 7) is the resultant topological space. Assume that Ox is the
presheaf defined in [0.2.2.

To show: (a) (Locality) If U € 7, U = |J,; Vi is an open cover for U and if
f1, fo € Ox(U) such that resgi(fl) = res%(fg) for all i € I, then f; = fs.

(b) (Gluing) If U € 7, U = |J;¢; Vi is an open cover for U and for all V;,
there exists f; € Ox(V;) such that TGS\‘;ZQ‘/J.(]FZ‘) = res“gmvj (f;) foralli,j eI,
then there exists a f € Ox(U) such that for all i € I, res{, (f) = f;.

(a) Assume that U € 7 and J,.; Vi is an open cover for U. Assume that
f1, fo € Ox(U) such that res{, (f1) = res{,(fz) for all i € I. Since

filv, = foly;, for all i € I, f; and f, must agree on |J,.; V;. Since

U C U;e; Vi, it must follow that f; and f; agree on U. So, fi = fo.

(b) Assume that U € 7 and J,.; V; is an open cover for U. Assume that for
all i € I, there exists f; € Ox(V;) such that resgjmvj(fi) = resgjmvj(fj) for
all 7,7 € I. Assume that z € U. Then, there exists a ¢ € I such that z € V;.
So, we define the function f such that f(z) = fi(z) for all x € V; and i € I.
To show: (ba) f is well defined.

(bb) For all i € I, res{, (f) = fi.

(bc) f is a smooth function.

(ba) Assume that z € V; N'V; for some 4,5 € I. Then, f;(z) = f;(z) because
res“zm/j(fi) = res“gm/j(fj). So, f must be a well defined function.



(bb) From our construction of f, resy, (f) = fi.

(bc) Since the family of functions f; : V; — R are all smooth, we can take
coordinate charts (Uj;, ;) such that V; C (J; U;; and the map f; o P, is a
smooth function from p(V; NU,;) € R™ to R. To see that f is smooth,
assume that © € X. Then, x € V; for some ¢ € I. By construction,

f(z) = fi(x) and so, f o go;il = f;o go;zl for some coordinate chart (Uj;, ¢;)
containing x. Since the RHS is a smooth function from R" to R, the LHS
must also be smooth. Hence, f itself is a real-valued smooth function.

Observe that f is unique. To see why, assume that there exists g € Ox(U)
such that for all i € I, res{, (g) = fi. Since res{, (f) = f; for all i € I as
well, we can use the locality axiom proved in part (a) to deduce that f = g.
Hence, f must be unique.

Therefore, Ox defines a sheaf on X and as a result, (X, 7,Ox) is a ringed
space. ]

Since S? is a smooth 2-manifold, we can apply [0.2.3 to deduce that
(52, 7g2,Og2) is a ringed space, where Tg2 is the manifold topology on S?
and Og2 is the presheaf on S2, as depicted in|0.2.2 and [0.2.3.

Part (a): Assume that W C S? is open and that f : W — R is smooth.
Assume that W C W is also an open set. Applying[0.2.1, we find that the
restriction f|ys : W’ — R is also a smooth function. That is,

flw: € C=(W).

Part (b): Since (52,752, Og2) is a ringed space by [0.2.3, it must
automatically satisfy the gluing axiom.



0.3 Question 3 (L3-13)

Lemma 0.3.1 (Laplacian on S?). Let f: R® = R be a smooth function.
Then, on R3 — {0},

Proof. Assume that f :R® — R is a smooth function. Then, the usual
Laplacian on f is given by

_Of o O
- Oz? + Oy? + 022"

We will make the substitutions to spherical coordinates:

Af

1. x =rsinfcos ¢
2. y =rsinfsin ¢
3. z=rcosl
where 0 € [0, 7], ¢ € [0,27] and r > 0. Operating within spherical

coordinates, we will derive an expression for the Laplacian. First, we need
to understand how to work in spherical coordinates.

Let the vector v = (z,y,2) = (rsinf cos @, r sin @ sin ¢, r cos ) in R3.
Denote the three unit vectors in spherical coordinates by e,, eg and es.
They are defined by the equations

ov ov ov
o h,e,., 20— heeg and 8_¢ = hgey.

where h,, hg and hg are scale factors. By differentiating the position vector
v, we find that

h. =1,e, = (sin 6 cos ¢, sin f sin ¢, cos §)

hg = r,eq = (cos B cos ¢, cos 0 sin ¢, — sin 0)

and

hy =rsinf, ey = (—sin ¢, cos ¢, 0).
By using the usual dot product on R3, we find that
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€r €9 =€ ey =ceg-cy=0.

Thus, spherical coordinates is an orthogonal coordinate system in R3. Now,
we will derive the gradient V and the divergence operators in spherical
coordinates.

Suppose that f: S?(r) — R is a smooth function in spherical coordinates,
where S?(r) denotes the sphere centred at the origin of radius r € (0, 00).
Let Vf = fre, + foeo + foey. We will find the component functions f,, fo
and fy. Our starting point is the chain rule. In spherical coordinates,

df = afd + a—fde—f-a—;dgb.
But,
df = afcl —I—?d —i—%

= Vf (dx,dy,dz)
= (frer + f@eﬁ + f¢€¢) dv

ov ov
= (fr€r+f9€9+f¢e¢) (a dT+—d9+—¢d¢)
= (frer + foeo + foes) - (hpepdr 4 hoeadt + hyegdo)

= hTder + hgfede + h¢f¢d(]§

By comparing coefficients, we deduce the following set of equations:

1 o0f I 1 0f and f 1 0f
—— . fp=-——=—an = ——
he @r'"° " hy 00 ?" hy 0¢
Therefore, the gradient operator in spherical coordinates is
0 f 10 f 1 of

Vf=—-—e ———¢y.
/= t 89 +rsm98¢e¢
Next, we need the d1vergence. Let A = Aje, + Aseg + Azey denote a
smooth vector field. We require a few properties before we proceed with the
calculation. The first of these is the cross products

fr:

er X €g = €g, 6, X €4 = —eg and ey X ey = €,.
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These can be verified by direct calculation. The next property is the
linearity of the divergence operator:

V-A=V-Ae, +V-Ayeg+ V- Asey.
By linearity, we will first compute V - (Aje,). This becomes

V- (Ae,)=V- (A1h2h3[ %])

hy " iy
= V(Ahohs) - (22 s X 1) 4 AihohyV - [5 x 22)
= V(A hohs) - (h2 x Z)
_ %hger V(Arhohs)

h1;2h3 i(Athhf”)

In the above computation, we used the fact that for any two smooth
functions f and g,
V- (VfxVg)=0.

By doing similar computations for V - (Aseg) and V - (Aze,) and adding our
results together, we find that the divergence of a smooth vector field is

1 0 0 0
V-A= m(ar(fllr sinf) + ae(AQT sinf) + a—¢(A37"))
Now, we can finally compute the Laplacian as follows:
Af=V-(Vf)

B af 18f 1 of
=V (87" oty r00° +rsin98_¢e¢>

1 0 ,0f , 0 ,10f 0 1 of

= Zsnd artar” 00T 5 t 5 g as”)

The above expression can be written more simply as
1 0,5 . 0f g,. 0 f o, 1 of
Af= r? sme(ﬁr(r or + 8q§(sm98¢

We can further simplify the above equation as follows:

))-
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19 of

of 1 of

Af= Tgsmg(@?“(r Sm95> 3«9( 9_) 8_¢(81n98¢>>
B TQSliHG(SIHQ[T 8_£+2 G_f]jL%( 9%) 511119%)
2 2
:%—i_igi—i_ﬂ[su}l@@@(l Qg—g) 811112(9%;;]
:%4_%%4_ — Qg2 f

10, ,0f
—7—25( 5) _ASQf

Note that this holds on R3\{0} since r > 0.
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0.4 Question 4 (L4-4)
Part (a): We will state the question asked in part (a) as a lemma below.

Lemma 0.4.1. Let f : U — Endc(V) be a function, where U C R™ is open
and V is a C-vector space with dimension d. Let B be a basis for V. Then,

f 1s smooth with respect to 5 if and only if it is smooth with respect to any
basis for V.

Proof. Assume that U and V are defined as above. Assume that [ is a
basis for V. Assume that f is defined as above. Note that if f is smooth
with respect to any basis for V', then it must be smooth with respect to 5.
It suffices to prove the converse of this statement.

To show: (a) If f is smooth with respect to the basis 3, then it is smooth
with respect to any basis.

(a) Assume that f is smooth with respect to the basis 5. Then, the
following composite must be smooth:

U L Ende(V) -2 My(C) —= C*

Let [C]§ denote the change of basis matrix from j to the basis a.
Furthermore, let &, : Myyq(C) — Myx4(C) be the map defined by

&a(A4) = [CI3A([C)

Then, consider the following composite:
U —L Ende(V) =25 Myya(C) =2 Mypo(C) —= C

The effect of this composite is to write the matrix representation of f(u) in
terms of the basis «, for all u € U. In order to show that the composite
above is smooth, it suffices to show that &, is a smooth map. Assume that

A € Myyq(C) so that

&a = [CIRA(CIH)

By identifying M;.q4(C) with C%, we observe that due to the matrix

multiplication in &, every entry of [C]3A([C]3)~" is a polynomial of the
entries in A. Since polynomials are smooth functions, we deduce that &,
must be a smooth function for all bases a of V. So, the above composite
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must be smooth, as it is a composite of smooth maps. Hence, f is smooth

with respect to any basis o of V.
O

Part (b): Our proof of the statement in part (b) will use the Leibnitz rule,
which was asked in part (d).

Lemma 0.4.2. Let U C R"™ be an open set. Let 3 be a basis for V. For all
i€{l,...,n} we define the C-linear operator 0/0x; on C*(U, Endc(V)) to

be the following composite:

o)

O (U, Ende(V)) Z25 0% (U, Myra(C)) —s C°°(U, Mysa(C))

lq;lo(f)

C>(U, Ende(V))

The operator 0/0x; acts on the matrices entry-wise. If f: U — Mgyq(C) is
identified with the matriz (f(u));, then the derivative is the matric

(agg) )ik

This operator is independent of the choice of basis B of V.

Proof. Assume that 0/0x; is defined as above. Let o be another basis for
V. We must show that the composite

0
C>(U, Ende(V)) 2 0% (U, Myra(C)) —s C%(U, Mya(C))

lc;lo(_)

C>(U, Endc(V))

gives the same result as the previous composite with basis .

To show: (a) For all bases a of V', 9/0x; must satisfy the Leibnitz rule. For
all f,g € C®(U, Endc(V)),

0 _of g
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(a) Assume that u € U. Suppose that [f(u)]a, [9(u)]a € Myxa(C) are the
matrices of f(u) and g(u) respectively. That is, Cy(f(u)) = [f(u)] and
Co(g(u)) = [g(u)]a. Then, the matrix associated to (fg)(u) = f(u) o g(u) is
the product [f(u)]a[g9(¢)]a. The jk entry of this matrix product is

> (I (w)]a)-

=1

Note that ([f(u)]a)ji; ([9(w)]a)w € C for all 5, k, 1 € {1,...,d}. Thus, when
we differentiate the above expression, the Leibnitz rule applies, resulting in
the following expression (in tandem with C-linearity of 0/0x;):

> A (Ul (gl + iy (gl

Recognising the above expression as the sum of two products of two
matrices, we can rewrite it as

OLf (u)]a
6?1"1-

Finally, when we apply C;!, we obtain the smooth function

0f (u) 9g(u)

Sealu) + f 5.

Therefore,

0f(u) 9g(u)
P ) + 1) = 2 (7g)(w).
Since this holds for an arbitrary v € U, we deduce that for all bases o of V,
0 0 f
o T = 5

Now we return to our original problem. Once again assume that u € U and
f e (U, Endc(V)). Then, the matrix of f(u) with respect to the basis «
can be expressed as

Co(f(w) = [f(uw)]a = [CI5[f(w)]s([CI)
Note that this means that



Applying 0/0z; in conjunction with the Leibnitz rule proved in part (a), we
deduce that

0 0

([0l = o (I ™)
= (@I + Bl - (C1) ™) (Leibits Rule)
— (I3l W)
= (o (B @5 + Ol (FNCE) ™ (Leibrite Rule

ox;
= (O (S (CI3)

In the above calculation, we have repeatedly used the fact that the change
of basis matrices [C]§ and ([C]3)~" have constant entries. Thus, their
derivatives are equal to the zero matrix. Now, we can apply C! to get

Ca o (Fw]a)) = € (o () ()
= %‘iu) (From [1)

- G - w))

Since this holds for all u € U, we deduce from the above equality that the
two composites for a and § are equal. So, d/0x; is independent of the
choice of basis for V.

To reiterate, we have proved the statements in both parts (b) and (d) in
the proof above.

Part (c): Here is statement we are required to prove.

Lemma 0.4.3. Let U C R™ be open and Endc(V') denote the C-vector
space of linear operators on a finite-dimensional C-vector space V. Let
C>(U, Endc(V)) denote the space of smooth functions f : U — Endc(V).
Then, C*(U, Endc(V)) is a C-algebra, with (fg)(u) = f(u) o g(u).
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Proof. Assume that U is an open subset of R"”, V' is a finite-dimensional
C-vector space and Endc (V') is the C-vector space of linear operators on V.
Suppose that V' has dimension d.

To show: (a) For all f,g,h € C>(U, Endc(V)), f(gh) = (fg)h.

(b) There exists a function 1 € C*(U, Endc(V')) such that 1f = f1 = f for
all f € C®(U, Endc(V)).

(c) For all f,g,h € C=(U, Endc(V)), f(9+h)= fg+ fh.
(d) For all f,g,h € C=(U, Endc(V)), (9+h)f =gf +hf.
(e) For all f,g € C®(U, Endc(V)) and A € C, (A\f)g = f(Ag) = Afg.

(f) C°°(U, Endc(V)) is a vector space with addition and scalar
multiplication.

(a) Assume that f,g,h € C®°(U, Endc(V)). Then, a quick calculation
shows that for all u € U and v € V,

So, f(gh) = (fg)h-

(b) Define the function 1 : U — Endc (V') which sends u € U to idy, where
tdy is the identity map on V. To see that 1 is a smooth function, pick an
ordered basis § of V and consider the composite  defined below:

U —' Ende(V) -2 My, a(C) —=— C*

This composite sends any u € U to the d x d identity matrix I;. Hence, ®
is smooth because each component function of ® is a constant (since all of
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the entries of I; are constant) and is thus, smooth. Furthermore, for all
u€e U and v eV,

(1f)(u)(v) = (L(u) o f(u))(v) = (idy o f(u))(v) = f(u)(v)

and

(fD)()(v) = (f(u) o idy)(v) = f(u)(v).
This shows that f1 =1f = f for all f € C®(U, Endc(V)).

(c) We compute for all uw € U and v € V as follows:

flg+h)(w)(v) = (f(u) o (g + h)(u))(v)
h)(u)(v))

So, flg+h) = fg+ fh.

(d) We compute for all u € U and v € V' as follows:

(g +h)f(u)(v) = (g + h)(u) o f(u))(v)
= (9+ )W) (f(u)(v))
= 9(w)(f(u)(v)) + h(u)(f(u)(v))
= (9(u) o f(u))(v) + (h(u) o f(u))(v)
= (gf + hf)(u)(v).

Therefore, (g +h)f =gf + hf.

(e) Assume that A € C. Then, we compute for all w € U and v € V,
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and

So, (Af)g = f(\g) = Afg.

(f) To see that C*°(U, Endc(V)) is a vector space, we first note that it is
closed under addition and scalar multiplication since adding two smooth
functions results in a smooth function and multiplying a smooth function
by a scalar results in a smooth function. Since Endc(V) is a C-vector
space, the vector space axioms must be satisfied for f(u) for all u € U and
f € C>®(U, Endc(V)). Since these results hold for all u € U, it must hold
for all f. So, C*°(U, Endc(V)) must be a C-vector space.

Thus, C*(U, Endc(V)) is a C-algebra.

Part (e): The problem asked here is stated and proved below:

Lemma 0.4.4. Let V be a C-vector space with dimV = d. Let
f e C®(U, Endc(V)), where U is an open subset of R". Then, the functions
u— Tr(f(u)) and u— det(f(u)) are also smooth functions from U to C.

Proof. Assume that V' is a C-vector space with dimV = d. Assume that
U CR™is open and f € C®(U, Endc(V)). Recall that this means that the
composite
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UL Ende(V) - My, o(C) —= C*

is smooth for any basis 5 of V. For the basis 5 of V', we define the trace
function T : U — C to be the composite

U~ Bnde(V) - Myea(C) -2 C.

Similarly, we define the determinant function Dg : U — C to be the
composite

U L5 Ende(V) -5 Myea(C) 2 C.

We will first show that the functions T3 and Dgs are independent of the
choice of basis for V.

To show: (a) If  and /3 are two different choices of basis for V', then
Ty =T,.

(b) If @ and /8 are two different choices of basis for V, then Dg = D,

(a) Assume that « is another basis for V' and that Ty, is the composite
below:

U~ Bnde(V) =25 Myeq(C) -2 C.

We must show that for all v € U, Ts(u) = T, (u). Using the composite, the
LHS evaluates as Tz(u) = Tr([f(u)]3). The RHS evaluates as

To(u) = Tr([f(w)la) = Tr([CI5[f (w)]s([C]5) ).

We will require the preliminary result below in order to proceed further.
To show: (aa) If A, B € Myyq(C), then Tr(AB) = Tr(BA).

(aa) Assume that A, B € My.q(C). Let A = (a;;) and B = (b;;). Then,

d d

i=1 k=1
We can exploit the commutativity of addition and multiplication in C in
order to rewrite the above expression as
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d d

=1 k=1

d d
= Z Z btk

i=1 k=1
d

= Z(bliail + -+ baiia)
i=1

= (by1a11 + - - + bararq) + (bigaor + - - - + bagasg) + - - - + (b1a@ar + - - - + baaQaa)
= (by1aiy + bigas + -+ - + brgaag) + - - - + (bararg + bazagg + - -+ + baaQaq)

d d
=3 briau

k=1 i=1
=Tr(BA).
So, Tr(AB) =Tr(BA).

(a) Now, we can use the result in part (aa) to deduce that

Since u € U was arbitrary, we deduce that T, = Tj.
(b) From the definition, D, : U — C is the composite
U —L Ende(V) —S25 Myya(C) -4 €.

We want to show that for all u € U, Dg(u) = D,(u). Applying the
appropriate composite, the LHS is det([f(u)]s), whereas the RHS is

Do(u) = det([f(w)]a) = det([CI5Lf (w)]s([C]5) ).
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However, by the multiplicative property of the determinant,

Do (u) = det([CI5[f (u)]s([C15) )
= det([C]3) det([f (u)]g) det(([C13) ™))
= det([C]3) det(([C]3) ™)) det([f (u)])
= det([f(u)]p)
= Dg(u)

Since u € U was arbitrary, we deduce that D, = Dg.

Because the definitions of Dg and T3 are independent of the choice of basis
B for V| we will now call these composites D and T

To show: (c¢) D is a smooth function.
(d) T is a smooth function.

(c) From the definition of D, it suffices to show that the determinant map
det : Myx4(C) — C is smooth. First, we identify My q4(C) with C%. Then,
for all A € C¥, det(A) is a polynomial of the entries in A. Since
polynomials are smooth, det : C* — C must be a smooth function.
Returning to the definition of D as the composite

U L Ende(V) -2 Mya(C) —%4 C

we observe that since f is smooth, the composite Cgo f : U — C% must be
smooth. So, D is the composite of smooth maps and is thus, smooth.

(d) Correspondingly to part (c), it suffices to show that the trace map

Tr : Myyq(C) — C is smooth. But, for all A € My, 4(C) = C, Tr(A) is a
polynomial of the entries in A. Since polynomials are smooth,

Tr : C* — C must be a smooth function. Hence, T : U — C is a smooth
function because it is the composite of the smooth maps Cz o f and T'r:

U L Ende(V) -2 Mya(C) -2 C
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0.5 Question 5 (L4-6)

We are given the equation

0 0
1 =p(R3,.) = exp(2m|[ro=— — z3—]).
p( 27r> p( [ 285[73 381’2])
Recall that the expression :Uga%g — :vga%z appeared as an infinitesimal
generator of the symmetry p(RZ). It was found in lectures that

d 0 0

%(P(Rﬁﬂazo = $28—$3 - $3a—$2-

Since p(R3.) is the identity operator on Pg(3), denoted by 1 in the first
equation, we would like to identify p(R3.) with the 3 x 3 identity matrix in
SO(3), which we will denote by I.

In order to simplify the situation, we would also like to identify the
infinitesimal ZL’Q% — :Ega%z with a 3 x 3 matrix. In order to do this, we will
repeat the derivation of this differential operator, but with R? rather than

its representation p(R%):

1
d d
@(Ri”a:g:% cos o —sina | |a=o
sino  cos o
1
= —sina —cosa | |a=0
cosa —sina
0 0 O
=10 0 -1
01 0

So, we can take the above matrix to be the 3 x 3 matrix representation of
O 9 et
) 923 T3 Das (§]

00 O
X=10 0 -1
01 0

The equation we originally have is equivalent to I = exp(27X). The trick
to revealing the trigonometric identity underpinning this identity is to
realise that
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XP=-X

From this, we deduce that for all n € Z~,

X2n+2 — (_1)nX2 and X2n+1 — (_1)nX

Now, for a general o € R, we argue as follows

p(Ry) = exp(aX)
= (aX)’

7l

—~

o

7=l

— (X))’
I+ 21 f
o0 a2i+1X2i+1
L T@ir ) (20!
0 a2i+1(_1>iX 0 a2i(_1)i+1X2
— ] b St a -y 4
*; (20 + 1) J“; (2i)!

= I +sin(a)X + (1 — cos(a)) X

~
+

NE

Ql\')

o

By substituting a = 27, we recover the original matrix identity
I = exp(27X).
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0.6 Question 6 (L.4-8)

Our first step is to understand the operators o(R%), o(RY) and o(R?) as
exponentials of differential operators in Cartesian coordinates. We already
know from the lectures that

o(R2) = explalyy — +5.)

as an operator on Hy(S?). Note that a € R. We will derive the analogous

expressions for o(RY) and o(R?).

Consider the operator p(RY) : Pi(3) — Pr(3). Let {27 | |3] = k} be a
C-basis for Pg(3). The derivative of the operator with respect to v can be
computed as

d d
——(p(RD) (") = = (¢ry (7))
d
= —|(r1cosa + r3sino Prg 2 —zysina + x5 cos )
da 2
= (—x sina + 23 cos &) By (21 cos o + x5 sin @) 12l (—xy sin @ 4 23 cos a)®
+ (1 cos o + 3 8in @) 252 (—x cos a — 23 sin @)
B3(—x1 sin o + x3 cos a)’83_1]
= Byay? (2 cos o + zgsin ) 7 (—zy sina + 25 cos o)t
—B3x? (—ay sin a 4 x5 cos )7 (21 cos o + 3 sin )1
0 0
= = (P
eri(lzsg — rip (@)
Hence,
d 0 0
—(p(RY%)) = p(RY, — —x1—
) = () o s — w17 ]

Utilising a similar procedure to the lectures and then transferring over to
the operator o(RY) on Hj(S5?), we obtain
0

7(RY) = explofz - — 20,

Here, we map x; to x, x5 to y and x3 to z. The derivation of the
exponential expression for o(R?) is very similar. First, we compute that
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d d

(PR = (9 (2°)

@[@1 cos a — xgsin )’ (1 sina + x5 cos )2 a5’
= (—TiSInNo — Ty COS)P1(xr1COSx — ToSIN )™ " (xySIn + Ty COS )X

; 8 ; p1—-1 ; B2 53
+(21 cos @ — o sin @) x5° By (11 cos o — o sin @) (y sin o + 5 cos )P

Ba+1
Ba2—1

= —61x§3 (21 cos a — xgsin a)? 1 (ay sin a + 25 cos )

+Boz? (11 cos a — o sin )P (2 sin v + 25 cos av)

0 0
— Vs I [OCANY
SDRQ([%%Q $2ax1](fﬂ )

Therefore,

0 0
o(R:) = exp(ajlr— —y—1|).
(12) = explafeg —v5-)
Now, we will covert all of the Cartesian differential operators to differential
operators in spherical coordinates. First, express the conversion of
Cartesian coordinates to spherical coordinates as matrices:

x 7 cOS ¢ sin 6
y| =|rsingsind
z rcosf

Here ¢ € [0,27] and 6 € [0, 7]. We can use the chain rule to express the
matrix [dz, dy, dz]T as

dx cos ¢ sin Odr + r cos ¢ cos 0df — r sin ¢ sin Od¢
dy | = | sin¢sinfdr + rsin ¢ cos 0df + r cos ¢ sin Od¢o
dz cos 0dr — rsin 0df
cos¢sinf rcos¢gcosf) —rsin@sinb dr
= | singsinf rsingcosf rcos@sind do
cos —rsinf 0 do

We can invert this matrix to solve for [dr, df, d¢]™:

dr cos¢sinf sinfsing cosf dx

do _ cos GTcos ¢ sin d)rcos 0 o # dy
sin ¢ cos ¢

d¢ " rsing rsin 6 0 dz

By reading off the columns of the square matrix, we deduce that
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g—cosgbsineg-FMQ_ sing 0
x or T 00  rsinf 0o

gzsin@singbag—i—smgbcoseg—i— cos¢p 0
-

dy 96 " rsinfd¢
and
2 B 2 B sin@ﬁ
0z o8 or r 00

It remains to substitute the above expressions and the spherical coordinates
for z, y and z into our expressions for o(R?),o(RY) and o(RZ%). Once we do
this, we obtain the following:

o(RY) = exp(a[—sin gb% — cos ¢ cot 9%])

o(RY) = exp(afcos qﬁ% — sin ¢ cot 9%])

and

0
o(R.) = exp(a—).
(%) = explagy)
Now we will turn to the general case and write a formula for o(R?) as an
exponential, where 7 € S? is an arbitrary unit vector. In order to do this,
we will modify spherical coordinates so that n plays the role of the z axis in
usual spherical coordinates.

Recall that in Py (3), if n = RZRY__,(e1), then the variables (¢, s, 13) are

P in—m/2
related to (z1, 2, x3) by
131 1
tQ — R‘;Rz*ﬂ'/Q )
t3 T3

Here, ¢ € [0,27] and n € [0, 7]. If we were to create spherical coordinates
where 7 plays the role of the z axis, then we expect the variable r to
remain unchanged (since rotations are isometric), whereas the angles 6 and
¢ in usual spherical coordinates are offset by angles of n — 7/2 and ¢
respectively. Define

L@ = rsin(® + 11— 5) cos(d + ) = —rcos(9’ + ) cos(¢/ + )
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2.y =rsin(@ +n—7)sin(¢’ + ) = —rcos( +n)sin(¢’ + ¢)
3. 2 =rcos(0 +n— %) =rsin(0 + 1)

where 6 € [0, 7] and ¢’ € [0,27]. As a consistency check, if we substitute
r=1,0"=x/2 and ¢ = 0 into the above coordinates, we obtain

/

T sin 7 cos ¢
y' | = [ sinysing | = RZRg,ﬂ/g(el) =n.
2 cosm

Thus, in our new coordinate system, 7 is the new z axis, which is what we
want. By converting from an operator in P (3) to an operator in Hy(S?),
we deduce that

0 0
/_ o Z/_
y azl ay/])
where under the isomorphism from Hy(3) to Hy(S?), t1 — 2/, t, — 3 and
t3 — 2'. It remains to write the differential operators % and % in our new

spherical coordinate system. We will approach this in a similar manner to
the previous case.

o(RL) = exp(a]

By the chain rule,

dx’ —cos(0' +n)cos(¢' + @) rsin(0' +n)cos(¢' + @)  rcos(6' +n)sin(¢ + ¢)
dy' | = | —cos(0 +n)sin(¢ + ¢) rsin(@ + n)sin(¢' + ¢) —rcos(0' +n) cos(¢’ + ¢)
dz' sin(6’ + n) rcos(0 +n) 0

dr

do’

d¢’

Inverting the Jacobian again, we find that

o oy D cos(p @) sin@ +n) O | sin(p+¢) 0
5 = cos(p+¢') cos(8'+n) 67"+ r 89’+r cos(0' +n) 0¢/
o / ) 0 sin(p+¢)sin(@ +n) 0 cos(p+¢) 0
5y = sin(p+¢') cos(6'+n) o - 90" rcos(0 +n)d¢

and
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9 _ sin(0' + n)g + Mi

0z or r o’
By making the appropriate substitutions, we obtain
0 0 . 0 0
y’a - z/a—y/ = —sin(¢' + w)w + cos(¢' + ) tan(0 + 77)8_¢’
Hence,

() = explaleos(s + ) tan(®! + 1) 1 — sin(o' + )5
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