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0.1 Question 1 (LB1-2)

Part (i): Assume that V' is a normed vector space and that v € V. Define
the map ny : F — V by

N :F—=V

A= v

We will demonstrate that [|n,|| = ||v||. Using the definition of the operator
norm, we will expand the LHS as follows:

70|l = sup |7, (M)
IAl=1

= sup || \v]|
IA|=1

= sup|A|[|v]
IA|=1

= [lvll-
Hence, {In,[| = [|v]l-
Part (ii): Define the map ¢ as follows:
¢V — B(F, V)

v =7,
Here 5(F, V) is the set of all bounded linear operators from F to V. We will

prove that ® is an isometric (norm-preserving) isomorphism of the normed
vector spaces V' and B(F, V).

To show: (a) ® is a linear map.

(b) ® is injective.

(c) ® is surjective.

(d) For all v € V, [jv]| = ||®(v)]].



(a) Assume that v,w € V and that a € F. First, observe that for all A € F,

(v +w)(A) = Nusw(X)
= ANv+w)
= AU+ \w
= 1(A) + 7 (A)
= ®0)(A) + 2(w)(N).

Hence, (v + w) = ®(v) + ®(w). For scalar multiplication, we proceed with
a similar calculation as above.

@(Oﬁ])(}\) = 77041)0‘)
= AMaw)
= a(\v)
= any(A)
=ad(v)(N).

Therefore, ®(av) = a®(v). The two calculations above demonstrate that ¢
is linear.

(b) Assume that v,w € V and that ®(v) = ®(w). Then, 1, = 1, and so, for
all A €T,

Av = 1y(A) = nw(A) = Aw.

Since Av = Aw for all A € F, it must hold whenever A # 0. Then,
Av —w) = 0 and consequently, v —w = 0. So, v = w and as a result,
must injective.

(c) Assume that S € B(IF, V). Then, for each A € IF, S sends A to an
arbitrary vector S(A) in V. Since S is linear, for all «, 5 € F, we have

S(aB) = aS(8).

In particular, when 8 = 1, then S(a) = aS(1). Keeping this in mind, we
select the vector S(1) € V. Then, for all o € F,



(S(1)(a) = ns (@)
=aS(1)
= S(a).

So, ®(S(1)) = S. This reveals that ® is surjective.
(d) From part (i), we have ||®(v)| = ||n.|| = ||v|| for all v € V.

By combining parts (a) to (d) of the proof, we deduce that & is an isometric
(norm preserving) vector space isomorphism between V' and S(F, V).

Part (iii): Assume that V and W are normed vector spaces over the field
F. As a slight adaption of notation, let ®y : V' — B(F, V') be the isometric
isomorphism defined in the previous part. First, we will show that ¢ and
its inverse @;1 are continuous.

To show: (a) ®y is a continuous map.
(b) ®,;! is a continuous map.

(a) Assume that € € Ry. Take z,y € V and § = € so that ||z — y|| <e.
Then,

|y (2) — Pv(y)ll = |Pv(z —y)||  (Linearity)
= [lz =yl (Part (i)
< €.

Hence, &y is a continuous map.

(b) Assume that € € Roo. Take P,Q € S(FF, V). From part (ii) of this
question, we can write P = @y (P(1)) and Q = ®y(Q(1)) by the
surjectivity of ®y,. Now set § = € so that

1P = Q| = [|®v(P(1)) — Pv(Q(1))] <e. Then,



1231 (P) = 231 Q)| = [y (2v(P(1))) — 2y (Dy(QL))
= [[P(1) = Q)|
= [[(P = @)D
< sup[|(P = Q)N

IAI=1
=[P =Q|

< €.

Therefore, @;1 is also a continuous map.
Let T € p(V,W). Define the map Q : S(V,W) x V. — W by

AT, v) =T(v).
We can write 2 as the following composite:

idx dy ot
—_—

BV,W) xV BV, W) x B(F, V) —— BF,W) —— W

In the above composite, o denotes the composition of two bounded linear
operators:

o: B(V,W)x B(F,V)— B(F,W)

SxUwr SolU

The map id : 5(V,W) — 5(V, W) denotes the identity map on S(V, W). To
see that the above composite agrees with €2, we apply each step of the
composite to (T,v) € B(V,W) x V:

(T,v) = (T,my) = Ton, = Nrw) — T(v).
The last step of the composite requires justification. For all A € F,

(Ton)(N) =T(n.(\)
=T(\v)
= AT'(v)
= 17(0)(A)-



So, T o n, = nr(y) and thus, the composite agrees with 2. To see that 2 is
continuous, note that it is the composite of continuous maps.

1. ®y is continuous from part (a) of this particular question. The
identity map id is also continuous by a similar argument to part (a).
Since the product of continuous functions is continuous, id x ®y is
also continuous.

2. The composition map o is continuous as proven in lectures.

3. @;;} is also a continuous map by applying part (b) of this question.

Since € is the composite of continuous maps, {2 must therefore be
continuous.

Part (iv): Assume that 7': V — V is a bounded linear operator, where V'
is a Banach space. We want to show that for all v € V,

T"(v)
T

exp(T)(v) = lim 3

From the lectures, we know that the sequence of partial sums converges
absolutely in 5(V, V) and thus, converges:

Sm — Z—‘
A

=0

Hence, we can write

exp(T) = ; = nll_rgo Sm-
We also know from part (iii) that the map Q : 5(V,V) x V — V is also
continuous. Hence, it commutes with limits. Hence, we can express

exp(T')(v) as



(Continuity of Q)



0.2 Question 2 (LB1-5)

Assume that A € M,,»,(C). By using the Jordan normal form of A, we will
demonstrate that det(exp(A)) = exp(Tr(A)).

The eigenvalues of A, which we will denote by \; for all i € {1,...,n}, must
exist in the field C, since C is algebraically closed. So, there exists

P € GL,(C) such that A = PJP~! where J is the Jordan normal form of
A (an upper triangular matrix with the eigenvalues of A along its
diagonal). Observe that by taking the trace of both sides, we find that

Tr(A) =Tr(PJP ) =Tr(JP'P)=Tr(J) =M+ -+ A\

since Tr(XY) =Tr(YX) for all X,Y € M, «,(C). Now, apply the
exponential map to A, which yields

exp(A) = exp(PJP™)
— (PJP7')
:Z‘f ( il )

1=0
= PJP!
*Z i
1=0
e} Jz -
=PQ_ P
=0
= Pe’ P71,

To simplify this, we can further decompose J as the sum D + N, where D
is the diagonal matrix diag[A1, ..., \,;] and N is a nilpotent, upper
triangular matrix with zeros across its diagonal. By applying the
exponential map once again, we find that e = diag[e™, ..., e’] and that
eV is an upper triangular matrix with ones along its diagonal (this reveals
that det(eV) = 1).

Since DN = ND (as D is a diagonal matrix), exp(D + N) = exp(D) exp(N)
and consequently, exp(A) = PePT™V P~ = PePeN P~ We can now take
the determinant of both sides to get



det(exp(A)) = det(P) det(e?) det(e™)[det(P)] ™
= det(P) det(e”)(1)[det(P)]™" (Definition of e)
= det(e?)
=exp(Tr(A)).



0.3 Question 3 (LB1-6)

Our first observation in this question is that the matrices X, Y and H are
all nilpotent. In fact, a quick calculation reveals that X? = Y? = H? = (.
Assume now that @ € R. Then, we can compute

exp(aX)=I+aX + (aX)* +O(X?)

2!
=I+aX
1 o 0
=10 1 0],
0 0 1

exp(aY) =1+aY + (V)" + O(X?)

21
=] +aY
1 0 0
=10 1 «
0 0 1
and
H2
exp(aH) =1+ aH + % +O(X?)
— I +aH '
1 0 «
=101 0
00 1

Note: The use of Big O notation in the above calculations is to collect all
the higher order terms in the infinite series expansions. This is not the
same as how Big O notation was used to prove the Lie product formula in
lectures.
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0.4 Question 4 (L5-3)

Assume that H is a finite dimensional inner product space and T : H — H
be a linear operator. We will demonstrate that 7" is skew self-adjoint if and
only if for all o € R, e*T is unitary.

To show: (a) If T is skew self-adjoint, then e’ is unitary for all a € R.
(b) If e°T is unitary for all € R, then T is skew self-adjoint.
(a) Assume that T is skew self-adjoint and o € R. Assume that x,y € H.

We want to show that (e*Tz, e*Ty) = (z,y). We compute the LHS directly
as

<€aT$,€aTy> _ <n£1_rgoz (67 x
i=0

i' ,eozTy>

= lim ( E @ a:,eo‘Ty> ((—,v) is continuous)
m—0o0

|
—~ il
: OZ' i aT
= lim Z 7<T z, e y).
We would like to apply skew self-adjointness of T" to the above line. The
way we will do this is encapsulated below:
To show: (aa) For all i € Zwg, (T'z,y) = (—1)"(z, T"y).

(aa) We can prove this by induction. For the base case, assume that i = 1.
Due to the assumption that 7' is skew self-adjoint, we have

(Tz,y) = —(x,Ty) = (-1)(z, Ty)

as required. This proves the base case.

For the inductive hypothesis, assume that for some k € Z,,
(T*xz,y) = (=1)¥(x, T"y). Then, observe that

(T a,y) = (T(T*x),y) = —(T*w, Ty) = (=1)"{z, T y).

This completes the induction.
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(a) Using part (aa), we can proceed with our calculation as follows:

. = ’ i aT T - ai(_l)z i _oT
dim 3 Ty T eh) = lim 3 = o Tehy)

({(v, —) is continuous)

aT

Hence, for all 7,y € H and a € R, (e*Tz,eTy) = (x,y). So, e*T must be a

unitary operator on H for all a € R.

(b) For the converse, assume that for all a € R, e°T is a unitary operator
on H. This means that for all z,y € H,

(e a,y) = (z,e"y).

Roughly speaking, the adjoint operator of e*? is the inverse e
Differentiating both sides of the equation with respect to a yields (in
tandem with the continuity of the inner product),

—aT

j« xy»—§« eTy))
( ( x),y) = (x, ( _O‘Ty)> (Continuity of inner product)
<T y) = (x, y)

(Te® :I;,y) = —(a;,Te Ty).

Setting o« = 0, we obtain (T'z,y) = —(z, Ty). This reveals that T is skew
self-adjoint as required.
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