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0.1 Question 1 (LB1-2)

Part (i): Assume that V is a normed vector space and that v 2 V . Define
the map ⌘V : F ! V by

⌘v : F ! V

� 7! �v

We will demonstrate that k⌘vk = kvk. Using the definition of the operator
norm, we will expand the LHS as follows:

k⌘vk = sup
|�|=1

k⌘v(�)k

= sup
|�|=1

k�vk

= sup
|�|=1

|�|kvk

= kvk.

Hence, k⌘vk = kvk.

Part (ii): Define the map � as follows:

� : V ! �(F, V )

v 7! ⌘v

Here �(F, V ) is the set of all bounded linear operators from F to V . We will
prove that � is an isometric (norm-preserving) isomorphism of the normed
vector spaces V and �(F, V ).

To show: (a) � is a linear map.

(b) � is injective.

(c) � is surjective.

(d) For all v 2 V , kvk = k�(v)k.
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(a) Assume that v, w 2 V and that ↵ 2 F. First, observe that for all � 2 F,

�(v + w)(�) = ⌘v+w(�)

= �(v + w)

= �v + �w

= ⌘v(�) + ⌘w(�)

= �(v)(�) + �(w)(�).

Hence, �(v + w) = �(v) + �(w). For scalar multiplication, we proceed with
a similar calculation as above.

�(↵v)(�) = ⌘↵v(�)

= �(↵v)

= ↵(�v)

= ↵⌘v(�)

= ↵�(v)(�).

Therefore, �(↵v) = ↵�(v). The two calculations above demonstrate that �
is linear.

(b) Assume that v, w 2 V and that �(v) = �(w). Then, ⌘v = ⌘w and so, for
all � 2 F,

�v = ⌘v(�) = ⌘w(�) = �w.

Since �v = �w for all � 2 F, it must hold whenever � 6= 0. Then,
�(v � w) = 0 and consequently, v � w = 0. So, v = w and as a result, �
must injective.

(c) Assume that S 2 �(F, V ). Then, for each � 2 F, S sends � to an
arbitrary vector S(�) in V . Since S is linear, for all ↵, � 2 F, we have

S(↵�) = ↵S(�).

In particular, when � = 1, then S(↵) = ↵S(1). Keeping this in mind, we
select the vector S(1) 2 V . Then, for all ↵ 2 F,
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�(S(1))(↵) = ⌘S(1)(↵)

= ↵S(1)

= S(↵).

So, �(S(1)) = S. This reveals that � is surjective.

(d) From part (i), we have k�(v)k = k⌘vk = kvk for all v 2 V .

By combining parts (a) to (d) of the proof, we deduce that � is an isometric
(norm preserving) vector space isomorphism between V and �(F, V ).

Part (iii): Assume that V and W are normed vector spaces over the field
F. As a slight adaption of notation, let �V : V ! �(F, V ) be the isometric
isomorphism defined in the previous part. First, we will show that �V and
its inverse ��1

V are continuous.

To show: (a) �V is a continuous map.

(b) ��1
V is a continuous map.

(a) Assume that ✏ 2 R>0. Take x, y 2 V and � = ✏ so that kx� yk < ✏.
Then,

k�V (x)� �V (y)k = k�V (x� y)k (Linearity)

= kx� yk (Part (i))

< ✏.

Hence, �V is a continuous map.

(b) Assume that ✏ 2 R>0. Take P,Q 2 �(F, V ). From part (ii) of this
question, we can write P = �V (P (1)) and Q = �V (Q(1)) by the
surjectivity of �V . Now set � = ✏ so that
kP �Qk = k�V (P (1))� �V (Q(1))k < ✏. Then,
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k��1
V (P )� ��1

V (Q)k = k��1
V (�V (P (1)))� ��1

V (�V (Q(1)))k

= kP (1)�Q(1)k

= k(P �Q)(1)k

 sup
|�|=1

k(P �Q)(�)k

= kP �Qk

< ✏.

Therefore, ��1
V is also a continuous map.

Let T 2 �(V,W ). Define the map ⌦ : �(V,W )⇥ V ! W by

⌦(T, v) = T (v).

We can write ⌦ as the following composite:

�(V,W )⇥ V �(V,W )⇥ �(F, V ) �(F,W ) W
id⇥�V � ��1

W

In the above composite, � denotes the composition of two bounded linear
operators:

� : �(V,W )⇥ �(F, V ) ! �(F,W )

S ⇥ U 7! S � U

The map id : �(V,W ) ! �(V,W ) denotes the identity map on �(V,W ). To
see that the above composite agrees with ⌦, we apply each step of the
composite to (T, v) 2 �(V,W )⇥ V :

(T, v) 7! (T, ⌘v) 7! T � ⌘v = ⌘T (v) 7! T (v).

The last step of the composite requires justification. For all � 2 F,

(T � ⌘v)(�) = T (⌘v(�))

= T (�v)

= �T (v)

= ⌘T (v)(�).
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So, T � ⌘v = ⌘T (v) and thus, the composite agrees with ⌦. To see that ⌦ is
continuous, note that it is the composite of continuous maps.

1. �V is continuous from part (a) of this particular question. The
identity map id is also continuous by a similar argument to part (a).
Since the product of continuous functions is continuous, id⇥ �V is
also continuous.

2. The composition map � is continuous as proven in lectures.

3. ��1
W is also a continuous map by applying part (b) of this question.

Since ⌦ is the composite of continuous maps, ⌦ must therefore be
continuous.

Part (iv): Assume that T : V ! V is a bounded linear operator, where V
is a Banach space. We want to show that for all v 2 V ,

exp(T )(v) = lim
n!1

nX

i=0

T i(v)

i!
.

From the lectures, we know that the sequence of partial sums converges
absolutely in �(V, V ) and thus, converges:

sm =
mX

i=0

T i

i!
.

Hence, we can write

exp(T ) =
1X

i=0

T i

i!
= lim

m!1
sm.

We also know from part (iii) that the map ⌦ : �(V, V )⇥ V ! V is also
continuous. Hence, it commutes with limits. Hence, we can express
exp(T )(v) as
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exp(T )(v) = ⌦(exp(T ), v)

= ⌦(
1X

i=0

T i

i!
, v)

= ⌦( lim
m!1

mX

i=0

T i

i!
, v)

= lim
m!1

⌦(
mX

i=0

T i

i!
, v) (Continuity of ⌦)

= lim
m!1

mX

i=0

T i(v)

i!
.
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0.2 Question 2 (LB1-5)

Assume that A 2 Mn⇥n(C). By using the Jordan normal form of A, we will
demonstrate that det(exp(A)) = exp(Tr(A)).

The eigenvalues of A, which we will denote by �i for all i 2 {1, . . . , n}, must
exist in the field C, since C is algebraically closed. So, there exists
P 2 GLn(C) such that A = PJP�1, where J is the Jordan normal form of
A (an upper triangular matrix with the eigenvalues of A along its
diagonal). Observe that by taking the trace of both sides, we find that

Tr(A) = Tr(PJP�1) = Tr(JP�1P ) = Tr(J) = �1 + · · ·+ �n

since Tr(XY ) = Tr(Y X) for all X, Y 2 Mn⇥n(C). Now, apply the
exponential map to A, which yields

exp(A) = exp(PJP�1)

=
1X

i=0

(PJP�1)i

i!

=
1X

i=0

PJ iP�1

i!

= P (
1X

i=0

J i

i!
)P�1

= PeJP�1.

To simplify this, we can further decompose J as the sum D +N , where D
is the diagonal matrix diag[�1, . . . ,�n] and N is a nilpotent, upper
triangular matrix with zeros across its diagonal. By applying the
exponential map once again, we find that eD = diag[e�1 , . . . , e�n ] and that
eN is an upper triangular matrix with ones along its diagonal (this reveals
that det(eN) = 1).

Since DN = ND (as D is a diagonal matrix), exp(D+N) = exp(D) exp(N)
and consequently, exp(A) = PeD+NP�1 = PeDeNP�1. We can now take
the determinant of both sides to get
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det(exp(A)) = det(P ) det(eD) det(eN)[det(P )]�1

= det(P ) det(eD)(1)[det(P )]�1 (Definition of eN)

= det(eD)

= e�1+···+�n

= exp(Tr(A)).
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0.3 Question 3 (LB1-6)

Our first observation in this question is that the matrices X, Y and H are
all nilpotent. In fact, a quick calculation reveals that X2 = Y 2 = H2 = 0.
Assume now that ↵ 2 R. Then, we can compute

exp(↵X) = I + ↵X +
(↵X)2

2!
+O(X3)

= I + ↵X

=

0

@
1 ↵ 0
0 1 0
0 0 1

1

A ,

exp(↵Y ) = I + ↵Y +
(↵Y )2

2!
+O(X3)

= I + ↵Y

=

0

@
1 0 0
0 1 ↵
0 0 1

1

A

and

exp(↵H) = I + ↵H +
(↵H)2

2!
+O(X3)

= I + ↵H

=

0

@
1 0 ↵
0 1 0
0 0 1

1

A .

Note: The use of Big O notation in the above calculations is to collect all
the higher order terms in the infinite series expansions. This is not the
same as how Big O notation was used to prove the Lie product formula in
lectures.
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0.4 Question 4 (L5-3)

Assume that H is a finite dimensional inner product space and T : H ! H

be a linear operator. We will demonstrate that T is skew self-adjoint if and
only if for all ↵ 2 R, e↵T is unitary.

To show: (a) If T is skew self-adjoint, then e↵T is unitary for all ↵ 2 R.

(b) If e↵T is unitary for all ↵ 2 R, then T is skew self-adjoint.

(a) Assume that T is skew self-adjoint and ↵ 2 R. Assume that x, y 2 H.
We want to show that he↵Tx, e↵Tyi = hx, yi. We compute the LHS directly
as

he↵Tx, e↵Tyi = h lim
m!1

mX

i=0

↵iT ix

i!
, e↵Tyi

= lim
m!1

h

mX

i=0

↵iT ix

i!
, e↵Tyi (h�, vi is continuous)

= lim
m!1

mX

i=0

↵i

i!
hT ix, e↵Tyi.

We would like to apply skew self-adjointness of T to the above line. The
way we will do this is encapsulated below:

To show: (aa) For all i 2 Z>0, hT ix, yi = (�1)ihx, T iyi.

(aa) We can prove this by induction. For the base case, assume that i = 1.
Due to the assumption that T is skew self-adjoint, we have

hTx, yi = �hx, Tyi = (�1)1hx, Tyi

as required. This proves the base case.

For the inductive hypothesis, assume that for some k 2 Z>0,
hT kx, yi = (�1)khx, T kyi. Then, observe that

hT k+1x, yi = hT (T kx), yi = �hT kx, Tyi = (�1)k+1
hx, T k+1yi.

This completes the induction.
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(a) Using part (aa), we can proceed with our calculation as follows:

lim
m!1

mX

i=0

↵i

i!
hT ix, e↵Tyi = lim

m!1

mX

i=0

↵i(�1)i

i!
hx, T ie↵Tyi

= lim
m!1

hx,
mX

i=0

↵i(�1)i

i!
T ie↵Tyi

= hx, lim
m!1

mX

i=0

(�↵T )i

i!
e↵Tyi (hv,�i is continuous)

= hx, e�↵T e↵Tyi

= hx, yi.

Hence, for all x, y 2 H and ↵ 2 R, he↵Tx, e↵Tyi = hx, yi. So, e↵T must be a
unitary operator on H for all ↵ 2 R.

(b) For the converse, assume that for all ↵ 2 R, e↵T is a unitary operator
on H. This means that for all x, y 2 H,

he↵Tx, yi = hx, e�↵Tyi.

Roughly speaking, the adjoint operator of e↵T is the inverse e�↵T .
Di↵erentiating both sides of the equation with respect to ↵ yields (in
tandem with the continuity of the inner product),

d

d↵
(he↵Tx, yi) =

d

d↵
(hx, e�↵Tyi)

h
d

d↵
(e↵Tx), yi = hx,

d

d↵
(e�↵Ty)i (Continuity of inner product)

hTe↵Tx, yi = hx,�Te�↵Tyi

hTe↵Tx, yi = �hx, Te�↵Tyi.

Setting ↵ = 0, we obtain hTx, yi = �hx, Tyi. This reveals that T is skew
self-adjoint as required.
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