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Lecture 6

Q4. Commutator and the exponential

Let X,Y € gl(n,C). We will prove the following two identities:

2
Y, X] = 8(25% (exp(—sY) exp(—tX) exp(sY) exp(tX))L:t:O , (4.1)
and  exp(—tY) exp(—tX) exp(tY) exp(tX) = exp(t*[Y, X] + O(t)), (4.2)

where [Y, X] =Y X — XY is the commutator.

Part a)

We calculate

;(esYetXesYetX) _ (gt (esYetX>> (esYetX> i (esteftX> (gt <63YetX)>

— _e—sYXe—tXesYetX 4+ e—sYe—tXesYXetX ’

so taking % of the above expression gives

gy () = (1 (e ) ) (o) o (o) (g ()

n ( 808 <€_sy€_tx)> (esy XetX) N (e_sye_tx) ( aas (esy XetX))

— e*SYYXeftXeSYetX . esteftXXYeSYetX

. YefsyeftXesYXetX + €7SY67tX€SYYX€tX ’

where we have used %etx = XetX = !X X many times over. Therefore using the fact

that €?X = 1, the identity operator, we have
82
0s0t

(e—sYe—tXesYetX>

—YX - XY -YX+YX=YX-XY =[V,X]. (43)
s=t=0

Part b)

We remark that this statement will only be valid for ||X|],|Y || < log2 to ensure that
we can apply the logarithm at the end, so suppose X and Y satisfy this hypothesis. By



Taylor’s theorem (with Lagrange remainder, where J‘i—kkex = e for any k € N) we have

that for ¢ € R and some bounded operator X that there exists some b € [0,t] such that
1 exp(b)

exp(t) = 1+t+§t2+ G t3,
o Jexp(IX[) — 1 X[~ L x]2) = SPO (4.4
S P (II)§|||t)] = eXp J||X|3¢3. But then we have
exp(Xt) — 1 — Xt — %X2t2 i B i |X”t - eXp(bé”XHStf“. (4.5)
—3 =3

We recall from the Big O notation remark that f(¢) = O(t?) means that there exists some
C > 0 and & > 0 such that whenever t < € we have ||f(t)|| < Ct3. So, since || X| < log2
by hypothesis we have for sufficiently small ¢ that exp(b) < exp(||X|[t) < exp(||X]]) <
exp(log2) =2, so

< CPOIXI s 20082 0 _ (0820

1
eXp(Xt)—l—Xt—iXQtQ . = :

which we can write as

1
exp(Xt) =1+ Xt + 5X2t2 +O(t%) (4.6)
by our definition of O(#3).
Let us denote
_ L on o (XY
Ry(X) = exp(Xt) =1 = Xt — - X** = jz; T (4.7)

Then we know from our above analysis that ||R3(X)|| < (log2)3t® for any || X|| < log?2.
Suppose X and Y satisfy this condition and define £ = R3(Y’) and R = R3(X). Then we
calculate

1 1
exp(tY)exp(tX) = (1+Yt+ 5Y2t2 +L)(1+ Xt + 5X%2 +R)
1 1
=14+ Xt+ 5X"’t‘" +R+Yt+YXt?+ 5Y)(st?’ + YRt
1 1 1 1 1
+ §Y2t2 + 5Y2X1t3 + ZY?X%“ + §Y2’Rt2 + L+ LXt+ 5LX%Q + LR,

meaning we can calculate
1 1
eV e —1 — (X +Y)t - (§X2 +YX + 5Y2)zt2\|
1 1 1 1 1
= |R + 5YX%?’ + YRt + 5Y2Xt3 + ZY2X2t4 + 5Y?Rt? + L+ LXt+ §£X2t2 + LR
1 1 1 1
<RI+ SIVIIXIE + IV IIRIE+ SIVIPIXNE + LY IPIX P+ S 1Y PRI
1
+ I+ HEINIXTE+ SILIX N + LR
1 1 1 1
< (log2)3t3 + §(log 2)3t3 + (log 2)*t* + Q(log 2)3t3 4 Z(log 2)4 + §(log 2)°t°
1

+ (log 2)*t® + (log 2)*t* + i(log 2)%t° 4 (log 2)%¢°

< 10(log 2)3#3, (4.8)



where the last inequality holds for sufficiently small ¢ such that ¢3 < t* < t° < t5. Thus
we may write

1 1
VelX =1 (X +Y)t+ (§X2 +YX + 5Y2)t2 +O(t3), (4.9)
1 1
and e e ™ =1 (X +V)t+ (§X2 +YX + 51/2)752 +0(t3).

We can then perform a crude calculation that is justified using an identical kind of analysis
as in (4.8), with all the same hypotheses and bounds, to see that

1 1
e WXtV olX — (1 — (X +Y)t+ (§X2 +YX+ 5Y2)t2 + O(t3)) (1 + (X +Y)t

1 1
- (§X2 +YX+ 5Y2)t2 + O(t3)>

=1+ (X +Y)t+ (%X2 +YX + %YQ)tQ — (X +Y)t— (X +Y)%?

+ (%X2 +YX+ %YQ)tQ +0(t?)
— 14 <X2+2YX+Y2—XQ—XY—YX—YQ)t2+O(t3)
=1+ [V, X]t* +O(%). (4.10)
Then we see that lim;_,ge Y e XY !X =1 by the continuity of the exponential, which
tells us that for ¢ sufficiently small we have [|e ™ e X etY !X —1|| = ||[V, X]t2+O(t3)| < 1,

allowing us to take the logarithm of both sides due to the hypothesis that || X||, ||Y|| < log2,
thus meaning our expression fits inside the domain. Therefore,

log(e™ e e ) = log(1 + [V, X]t* + O(t)) = [Y, X]t* + O([[[Y, X]t* + O(#*)[*)
=Y, X]t> + O(th).

For sufficiently small ¢ we have ||log(e " e *Xe!Ye!X) — [V, X]t?|| < Ct* < Ct3 for some
constant C, so we may replace the O(t*) with O(t3) in line with the question. Hence
taking the exponential of both sides (which is valid by Lemma B1-14) we have

e e XY el X — exp([Y, X]t2 + O(t%)) . (4.11)



Q5. Fullness of Lie functor

Let G be a matrix Lie group where every element g € G can be written as
g =exp(X1)...exp(X,) forsome X;,...,X, €g

where g = Lie(G) is the Lie algebra of G - that is to say, G is connected. Recall the
functor defined in lectures

T :rep(G) — rep(g), (5.1)
_d _exp(tX)w —wv
Xov= p (exp(tX).v) L:O = }1_1}(1) —

which sends a representation exp(¢X).v of G to a representation of g given by X.v above.
We want to show that 7' is full, that is it is surjective on morphisms. In other words,
if (V,.v) and (W, .w) are representations of G and ¢ : V. — W is a linear morphism of
g-representations, then it is also a morphism of G-representations. Note that while the .y
and . notation is cumbersome, we adopt it in this proof to ensure utmost clarity when
dealing with many different operations.

We begin by getting all of our notation in order. Since ¢ is a linear morphism of g-
representations we know that

d(X.yv) =X weo(v) forall Xeg, veV. (5.2)

We want to show that for any g € G we have ¢(g.vv) = g.wé(v) where ¢ is the same
g-representation now acting on elements of G. We start with the base case where we let
g = exp(X) € G for some X € g, so we want to show ¢(exp(X).yv) = exp(X).wo(v).
Recall that for any representation .y, for any g € G our action g.yv can also be denoted
by an endomorphism o, € End(V, V') where ay4(v) = g.yv To this end we can define the
following functions
f ‘R— End(‘/’v W) ) f(t) =¢o Qexp(tX) s (53)
g: R — End(‘/a W) ) g(t) = aexp(tX) 0 ¢7
where o is composition of endomorphisms (i.e. matrix multiplication), and clearly in the
second case we let aey,(;x) € End(W, W). Hence for any v € V' we have

F) (V) = (¢ 0 Qexp(tx)) (V) = DQexp(ex) (v)) = d(exp(tX).vv), (5-4)
9()(v) = (Qexp(ex) © D) (V) = Qexp(ex) (¢(v)) = exp(tX).w(v) .

We have now reduced our base case to showing that f = g, which we can do by showing
they satisfy the same differential equation.

Recall that if X and Y commute then exp(X +Y) = exp(X)exp(Y) = exp(Y) exp(X),
and so since tX and hX obviously commute for scalars ¢t and h, we have

exp((h 4+ t)X).yvv = exp(hX +tX).yv = (exp(hX) exp(tX)).vv = exp(hX).v (exp(tX).yv),
where we used property R1 in the definition of a G-representation. We can then calculate

d d . ex h)X).yvv) — dlexp(tX).yv

© 000 = 2 (6 00 0) — fi 2RI D))~ o)1)
B . exp(hX).y(exp(tX).yv) —exp(tX).yv
=¢ <;£136 h >
= ¢(X.v (exp(tX).vv))
= X-W¢(exp(tX)'VU) = XW((Qb © aexp(tX))(U)) :




In the second equality we used the linearity (and hence continuity) of ¢, in the third
equality we used the definition of the g-representation from (5.1), and in the fourth equality
we used the fact that ¢ is a morphism of G representations. Therefore f satisfies the
differential equation

d
) = Xaw (1), (55)
Similarly we can calculate

2 90)®) = 2 (e 0 )(0) = & (exp(tX) wo(0)

oy SR+ 1) X) wé(v) — d(v)

h—0 h
o ep(hX).a (exp(EX)w(v) — 6(v)
htoO h

= X.W(eXp(tX).W¢(U)) - X'W(aexp(tX) © gb)(’l)) )
so once again we have

d

79 = Xwy(). (5.6)

Finally, notice that f(0) = ¢ 0 aeyp(0) = ¢ and g(0) = Qexp(o) © ¢ = ¢, so we have shown
that f and g satisfy the differential equation

{jty(t) = X.wy(t)

y(0) = ’ (5:)

and so by Picard’s theorem, using the same justification as in Theorem L4-5, we know
that the solution y(t) is unique, hence f(t) = g(t). Evaluating at ¢ = 1 we have

f(D)(v) = ¢(exp(X).vv) = exp(X).we(v) = g(1)(v), (5.8)

which concludes the base case. The inductive step is easy though: suppose this holds for
X1,...,X, €gso

O((exp(X1) . . exp(Xn))-vv) = (exp(X1) ... exp(X,))-wo(v) (5.9)

Recall that for a G-representation we have for all g, h € G and v € V that g.(h.v) = (gh).v,
so for X, 11 € g we have

¢ ((exp(X1 ... exp(X,) exp(Xn41)).vv) = ¢ ((exp(X1) ... exp(Xn)).v(exp(Xn+1)-vv))
= (exp(X1) ... exp(Xn))-w(exp(Xnt1)-vv)
= (exp(X1) ... exp(Xn)).w (exp(Xnt1). we(v))
= (exp(X1) . .. exp(Xn) exp(Xnt1))-wo(v),

where we used the inductive hypothesis in the second equality and (5.8) in the third. Thus
we have shown that for any exp(X7)...exp(X,) =g € G we have

P(g.vv) = gwo(v) (5.10)

and so ¢ is also a morphism of G-representations, thus 7" is full. [J



