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Lecture 6

Q4. Commutator and the exponential

Let X,Y 2 gl(n,C). We will prove the following two identities:

[Y,X] =
@
2

@s@t

�
exp(�sY ) exp(�tX) exp(sY ) exp(tX)

����
s=t=0

, (4.1)

and exp(�tY ) exp(�tX) exp(tY ) exp(tX) = exp(t2[Y,X] +O(t3)) , (4.2)

where [Y,X] = Y X �XY is the commutator.

Part a)

We calculate
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,

so taking @
@s of the above expression gives
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,

where we have used @
@te

tX = Xe
tX = e

tX
X many times over. Therefore using the fact

that e0X = 1, the identity operator, we have

@
2

@s@t

⇣
e
�sY

e
�tX

e
sY

e
tX
⌘����

s=t=0

= Y X �XY � Y X + Y X = Y X �XY = [Y,X] . (4.3)

Part b)

We remark that this statement will only be valid for kXk, kY k < log 2 to ensure that
we can apply the logarithm at the end, so suppose X and Y satisfy this hypothesis. By
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Taylor’s theorem (with Lagrange remainder, where dk

dxk e
x = e

x for any k 2 N) we have
that for t 2 R and some bounded operator X that there exists some b 2 [0, t] such that

exp(t) = 1 + t+
1

2
t
2 +

exp(b)

6
t
3
,

so

����exp(kXkt)� 1� kXkt� 1

2
kXk2t2

���� =
exp(b)

6
kXk3t3 , (4.4)

so
P1

j=3
(kXkt)j

j! = exp(b)
6 kXk3t3. But then we have

����exp(Xt)� 1�Xt� 1

2
X

2
t
2

���� =

������

1X

j=3

(Xt)j

j!

������


1X

j=3

(kXkt)j

j!
=

exp(b)kXk3

6
t
3
. (4.5)

We recall from the Big O notation remark that f(t) = O(t3) means that there exists some
C > 0 and " > 0 such that whenever t < " we have kf(t)k  Ct

3. So, since kXk < log 2
by hypothesis we have for su�ciently small t that exp(b)  exp(kXkt)  exp(kXk) 
exp(log 2) = 2, so

����exp(Xt)� 1�Xt� 1

2
X

2
t
2

����  exp(b)kXk3

6
t
3  2(log 2)3

6
t
3 =

(log 2)3

3
t
3
,

which we can write as

exp(Xt) = 1 +Xt+
1

2
X

2
t
2 +O(t3) (4.6)

by our definition of O(t3).

Let us denote

R3(X) = exp(Xt)� 1�Xt� 1

2
X

2
t
2 =

1X

j=3

(Xt)j

j!
. (4.7)

Then we know from our above analysis that kR3(X)k  (log 2)3t3 for any kXk  log 2.
Suppose X and Y satisfy this condition and define L = R3(Y ) and R = R3(X). Then we
calculate

exp(tY ) exp(tX) = (1 + Y t+
1

2
Y

2
t
2 + L)(1 +Xt+

1

2
X

2
t
2 +R)

= 1 +Xt+
1

2
X

2
t
2 +R+ Y t+ Y Xt

2 +
1

2
Y X

2
t
3 + YRt

+
1

2
Y

2
t
2 +

1

2
Y

2
Xt

3 +
1

4
Y

2
X

2
t
4 +

1

2
Y

2Rt
2 + L+ LXt+

1

2
LX2

t
2 + LR ,

meaning we can calculate

ketY etX � 1� (X + Y )t� (
1

2
X

2 + Y X +
1

2
Y

2)t2k

= kR+
1

2
Y X

2
t
3 + YRt+

1

2
Y

2
Xt

3 +
1

4
Y

2
X

2
t
4 +

1

2
Y

2Rt
2 + L+ LXt+

1

2
LX2

t
2 + LRk

 kRk+ 1

2
kY kkXk2t3 + kY kkRkt+ 1

2
kY k2kXkt3 + 1

4
kY k2kXk2t4 + 1

2
kY k2kRkt2

+ kLk+ kLkkXkt+ 1

2
kLkkXk2t2 + kLkkRk

 (log 2)3t3 +
1

2
(log 2)3t3 + (log 2)4t4 +

1

2
(log 2)3t3 +

1

4
(log 2)4t4 +

1

2
(log 2)5t5

+ (log 2)3t3 + (log 2)4t4 +
1

2
(log 2)5t5 + (log 2)6t6

 10(log 2)3t3 , (4.8)
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where the last inequality holds for su�ciently small t such that t
3
< t

4
< t

5
< t

6. Thus
we may write

e
tY
e
tX = 1 + (X + Y )t+ (

1

2
X

2 + Y X +
1

2
Y

2)t2 +O(t3) , (4.9)

and e
�tY

e
�tX = 1� (X + Y )t+ (

1

2
X

2 + Y X +
1

2
Y

2)t2 +O(t3) .

We can then perform a crude calculation that is justified using an identical kind of analysis
as in (4.8), with all the same hypotheses and bounds, to see that

e
�tY

e
�tX

e
tY
e
tX =

✓
1� (X + Y )t+ (

1

2
X

2 + Y X +
1

2
Y

2)t2 +O(t3)

◆ 
1 + (X + Y )t

+ (
1

2
X

2 + Y X +
1

2
Y

2)t2 +O(t3)

!

= 1 + (X + Y )t+ (
1

2
X

2 + Y X +
1

2
Y

2)t2 � (X + Y )t� (X + Y )2t2

+ (
1

2
X

2 + Y X +
1

2
Y

2)t2 +O(t3)

= 1 +
⇣
X

2 + 2Y X + Y
2 �X

2 �XY � Y X � Y
2
⌘
t
2 +O(t3)

= 1 + [Y,X]t2 +O(t3) . (4.10)

Then we see that limt!0 e
�tY

e
�tX

e
tY
e
tX = 1 by the continuity of the exponential, which

tells us that for t su�ciently small we have ke�tY
e
�tX

e
tY
e
tX�1k = k[Y,X]t2+O(t3)k < 1,

allowing us to take the logarithm of both sides due to the hypothesis that kXk, kY k < log 2,
thus meaning our expression fits inside the domain. Therefore,

log(e�tY
e
�tX

e
tY
e
tX) = log(1 + [Y,X]t2 +O(t3)) = [Y,X]t2 +O(k[Y,X]t2 +O(t3)k2)

= [Y,X]t2 +O(t4) .

For su�ciently small t we have k log(e�tY
e
�tX

e
tY
e
tX) � [Y,X]t2k  Ct

4  Ct
3 for some

constant C, so we may replace the O(t4) with O(t3) in line with the question. Hence
taking the exponential of both sides (which is valid by Lemma B1-14) we have

e
�tY

e
�tX

e
tY
e
tX = exp([Y,X]t2 +O(t3)) . (4.11)
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Q5. Fullness of Lie functor

Let G be a matrix Lie group where every element g 2 G can be written as

g = exp(X1) . . . exp(Xn) for some X1, . . . , Xn 2 g

where g = Lie(G) is the Lie algebra of G - that is to say, G is connected. Recall the
functor defined in lectures

T : rep(G) �! rep(g) , (5.1)

X.v =
d

dt

�
exp(tX).v

����
t=0

= lim
t!0

exp(tX).v � v

t
,

which sends a representation exp(tX).v of G to a representation of g given by X.v above.
We want to show that T is full, that is it is surjective on morphisms. In other words,
if (V, .V ) and (W, .W ) are representations of G and � : V ! W is a linear morphism of
g-representations, then it is also a morphism of G-representations. Note that while the .V

and .W notation is cumbersome, we adopt it in this proof to ensure utmost clarity when
dealing with many di↵erent operations.

We begin by getting all of our notation in order. Since � is a linear morphism of g-
representations we know that

�(X.V v) = X.W�(v) for all X 2 g , v 2 V . (5.2)

We want to show that for any g 2 G we have �(g.V v) = g.W�(v) where � is the same
g-representation now acting on elements of G. We start with the base case where we let
g = exp(X) 2 G for some X 2 g, so we want to show �(exp(X).V v) = exp(X).W�(v).
Recall that for any representation .V , for any g 2 G our action g.V v can also be denoted
by an endomorphism ↵g 2 End(V, V ) where ↵g(v) = g.V v To this end we can define the
following functions

f : R �! End(V,W ) , f(t) = � � ↵exp(tX) , (5.3)

g : R �! End(V,W ) , g(t) = ↵exp(tX) � � ,

where � is composition of endomorphisms (i.e. matrix multiplication), and clearly in the
second case we let ↵exp(tX) 2 End(W,W ). Hence for any v 2 V we have

f(t)(v) = (� � ↵exp(tX))(v) = �(↵exp(tX)(v)) = �(exp(tX).V v) , (5.4)

g(t)(v) = (↵exp(tX) � �)(v) = ↵exp(tX)(�(v)) = exp(tX).W�(v) .

We have now reduced our base case to showing that f = g, which we can do by showing
they satisfy the same di↵erential equation.

Recall that if X and Y commute then exp(X + Y ) = exp(X) exp(Y ) = exp(Y ) exp(X),
and so since tX and hX obviously commute for scalars t and h, we have

exp((h+ t)X).V v = exp(hX + tX).V v = (exp(hX) exp(tX)).V v = exp(hX).V (exp(tX).V v) ,

where we used property R1 in the definition of a G-representation. We can then calculate

d

dt
f(t)(v) =

d

dt

⇣
(� � ↵exp(tX))(v)

⌘
= lim

h!0

�(exp((t+ h)X).V v)� �(exp(tX).V v)

h

= �

✓
lim
h!0

exp(hX).V (exp(tX).V v)� exp(tX).V v

h

◆

= �(X.V (exp(tX).V v))

= X.W�(exp(tX).V v) = X.W ((� � ↵exp(tX))(v)) .
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In the second equality we used the linearity (and hence continuity) of �, in the third
equality we used the definition of the g-representation from (5.1), and in the fourth equality
we used the fact that � is a morphism of G representations. Therefore f satisfies the
di↵erential equation

d

dt
f(t) = X.W f(t) . (5.5)

Similarly we can calculate

d

dt
g(t)(v) =

d

dt

⇣
(↵exp(tX) � �)(v)

⌘
=

d

dt

�
exp(tX).W�(v)

�

= lim
h!0

exp((t+ h)X).W�(v)� �(v)

h

= lim
hto0

exp(hX).W (exp(tX).W�(v))� �(v)

h

= X.W (exp(tX).W�(v)) = X.W (↵exp(tX) � �)(v) ,

so once again we have

d

dt
g(t) = X.W g(t) . (5.6)

Finally, notice that f(0) = � � ↵exp(0) = � and g(0) = ↵exp(0) � � = �, so we have shown
that f and g satisfy the di↵erential equation

(
d
dty(t) = X.W y(t)

y(0) = �
, (5.7)

and so by Picard’s theorem, using the same justification as in Theorem L4-5, we know
that the solution y(t) is unique, hence f(t) = g(t). Evaluating at t = 1 we have

f(1)(v) = �(exp(X).V v) = exp(X).W�(v) = g(1)(v) , (5.8)

which concludes the base case. The inductive step is easy though: suppose this holds for
X1, . . . , Xn 2 g so

�((exp(X1) . . . exp(Xn)).V v) = (exp(X1) . . . exp(Xn)).W�(v) . (5.9)

Recall that for a G-representation we have for all g, h 2 G and v 2 V that g.(h.v) = (gh).v,
so for Xn+1 2 g we have

�
�
(exp(X1 . . . exp(Xn) exp(Xn+1)).V v

�
= �

�
(exp(X1) . . . exp(Xn)).V (exp(Xn+1).V v)

�

= (exp(X1) . . . exp(Xn)).W�(exp(Xn+1).V v)

= (exp(X1) . . . exp(Xn)).W (exp(Xn+1).W�(v))

= (exp(X1) . . . exp(Xn) exp(Xn+1)).W�(v) ,

where we used the inductive hypothesis in the second equality and (5.8) in the third. Thus
we have shown that for any exp(X1) . . . exp(Xn) = g 2 G we have

�(g.V v) = g.W�(v) (5.10)

and so � is also a morphism of G-representations, thus T is full.
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