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Lecture 3 - symmetries of Hilbert space 1013121
updated 2513121

We have seen in Lecture 2 how symmetries of a quantum system with Hilbert space H

may be identified with unitary or antiunitary transformations U
'

- H→ H
.

Now we

explore two examples : symmetries of the Hilbert space L
-(X

,
Q) of complex-valued

functions on the circle X = Sit and sphere X = S ? We will see that the Lie

group
SO (3) acts on L2 ( S2, Q) by unitary transformations, and in somesense

this representation is "universal
"

.

Firstwe briefly recall the definition of LYX , Q ) .

You have three choices : adopt the

definition from [MHS) which does not require measure theory (butyou need to know

how to complete a normed space ) , adopt the definition of LYX, E) as square - integrable

functions modulo some relation (requires measure theory ) orwaituntil I tell you an

orthonormal dense basis and adopt thatasyour definition .

All are acceptable ..

With X = S1 or X= S2 denoting the unit I-sphere and 2-sphere

5- = { see R2 I Half 't }
,
5 - { see R' l Hall = I } ( l . I )

let Cts(X
,

denote the Q-vector space of continuous complex-valued functions

on X with operations ( 91-4164=9641-464 , CHIGI
= IT(x) and with the norm

H - Hz defined by

119112=11×19123
"'

a. z)

where Is 't is as specified in [MHS, Lecture 17] and fsz means integration over the

sphere defined as follows. We parametric S
'

by spherical coordinates , recall

x ,
= rs inOws 'S OSO E IT

,
0 ETC 2K r > 0

( 1.3 )
x, = r sinO sing y = azimuthal angle
as = r cosO O = polar angle



②

2-

a

OT
r

go (
x
, y , Z) ( 2 - I)

y i
-

,
c

'

i >
yx &

Isis (x) as = f!
"

f! HsinOws 's, sincesing, cosO) sincedad 's

Exercise L3 - l ( if you took MHS) check that (
s ? Ssa ) is an integral pair . You may

assume that Iss is linear
.

By definition LYX, Cl ) (which we willsometimes denote simply by LYX)) is the

completion of ( Cts (X, Cl), H
-Hz ) as a normed space (MHS,

48 p -④] which

means that there is a norm -preserving injective linear map c : Cb Cx, d) → LYX, a)

(that is
,
we may view all continuous complex-valued functions Yon X as vectors in

↳ (X, Q ) , writing 49) simply as Y) and the Cl- vector space structure and

norm on LYX, E) can be described as follows
( 2 -2)

•

every vector YELYX,E) is a limit Y= limn → •
Yn of a sequence

of continuous functions Tn Ect (X, Q ) .

(so Cts (X
,

is dense in LYX, a)) .

• if Y= limn→ok ,
Y- limn→ • Tn with Yn

,
Le CH (X, Q)

for all n
,
then

(a) HY H = limn → all Ynll (2.3 )

(b) Tty = limn→ a ( Tn th )

(c) XY = limn
→ •
Xk FXEE



③

The space LYX, E) is a Hilbert space (
MHS

,
Theorem L20 - 137 with pairing

between Y = limn→ok , T= limn→ * Tn for 4h, Yn C- Cts (X, E) given by

< 4
,
y > = limn→ a Ctn , Tn) ( 3.1 )

= limn
→ of

×
TT yn (note the conjugation

convention differs from
(MHS) )

It is not appropriate to think of vectors in LYX, as functions , as given YELTX, at

the value Y (x) EIC for xEX is ill-defined
,
see (MHS, L20, L2 I] .

However the

average value over a region is always well-defined :

Exercise 23-2 Borrow ideas from [MHS, Example LZO -7] to define for any
"spherical rectangle

"
C defined by as OE b, c ETE d the

quantity felt Tds for any Yet ( S2, Q) ( physically,
this is interpreted , if 11411=1, as the probability of aparticle with

wavefunction 4 being found in C ) .

Z

X

ai
e •¥# a

ti:
×

L l dy

we write this set Cas

Cla, b) x (c , d) = { (x, y, z ) / as Os b
,
c ETE d } (3. 2)



④

Example L3
- I the set { II einO}nez is a (countable ) orthonormal dense basis

for L2 ( S1, Cl ) (MHS, Example L2 I -3] and the coefficients of

an arbitrary vector XELY S 'T Q) are the Fourier coefficients .

Def The rotation group
SO (n) is the group of all linear transformations f : IR

"

→ IR
"

which have determinant 1 and satisfy

( fx, fy > pen = (x, y>pen Vx , y E IR
"

(4.1 )

where Lx, y >Rn
= Sini XiYi is the standard innerproduct . The group

operation is composition .

In (MHS
,
L3] we showed that SO (2) is precisely the set {RO }oe co, za) of

rotations
,
with RoRo ' = Roto ' and Ro = (Ting

-

swine )
.

In general we

may view
SO (n ) as a subgroup of all invertible matrices a4h, IR) and in

this way (recall Lecture 1) see that the multiplication and inversion on SO(n )

are smooth .

We will prove later
SOCn ) is a Lie group .

Next we explain how SO (n tf acts on the Hilbert space
L2 ( S "

,
Q ) for he { I , 23

.

So( ntf acting on L2( Sn, Ed ( n e Ll , 23 )

Let g ESOCntf be given, and observe that g
: R

" RT's linear and thus continuous

It follows from 14.1 ) that g restricts to a continuous map g
: 5→ 5

. By precomposition
we have a Q- linear map

Cg : Cts (5
,
e)→ Cts Csn, E) (4. D

Cg (Y )
= Yog



⑤

Exercise 23-3 Prove that for gas above fsn ° 9) d S = fgn Yds for both n =L or

n=2
, using a change -of-variables formula for the Riemann integral .

By the exercise Cg is norm-preserving

H Cg (Y ) Hz = { Isn Hog Tds )
"'
= ( fgn 1412 og as }

"

= I Isn 141 'd s )
" '
= 1141k

,

"' ' "

and in particular Cg is bounded 11cg 11=1 and linear, hence continuous (MHS, Lemma 49-3]

and so by the universal property of the completion (MHS, theorem 48-9] there is a unique
continuous linear map § making the following diagram commute

A

Cg
L2 ( Sh, Cl ) > L'( Sh

,
e )

L ) ) c

(5. 2)

Cts Csn, E ) > Cts ( Sh
,
a)

Cg

By continuity if Y = limn→ok as in (2. 2) then Eg (4) = limn→ o ( Tno g ) .

Lemma L3 -1 For ne {1,2} and g c- SOCnt1) the linear transformation Eg is

bijective and unitary , and Eg En = Eng ,
Ez =L .

Boot Unitarily follows from Ex ↳
- 3 since for 9

,
YE LYSh, e) written as limits

4=1 im n→• Yn, F- limn→ok as in (2-2) we have by continuity of

Eg and the definition (3. 1) of the pairing



⑥

< Eg (4) , Egly ) > =L Eg ( firn. Yn ) , Eg Chism. Yn ) )

Eg ots

= Chip
.
Eg th ) , find

.
Eglin ) )

(5. 2) commutes

= thing
.
Cg th ) , hiya Glen ) )

(3.1 )

= him( Tn og , hog>

= nlihfofsnthogf.no g) as
" ' 't

= fins, Ign (Tien ) og DS
ExL3 -3

= fins
.
fgihhds

= LY
,
Y >

For the second set of claims let g , he sort 1) begiven and observe that since

Cg Cn (4) = Cg ( Yoh ) = oh) og = Yo ( hg) = Chg (X) commutativity
of the outer square in

En Eg
L'Csn, a)→ L4sn

,
e )- Lys; e)

t ) / c J c

CG .2)

CtsCsn
,

Q ) - Cts (Sh
,
- Clo (S7 e )

Ch Cg

-
Chg

implies by the universal property that Ego Eh = Eng . Similarly Ee = I - D



⑦

Exercise L3 - 4 Prove Eg En = Eng using limits .

Deff Given a Hilbert space
H let UCH ) denote the group of invertible unitary

transformations H→H under composition .

This shows that the group
SO (n tf acts on the set L2 ( Sh, Cl ) for nett , 2}

by bijective unitary linear transformations . The action is on the right

L2 ( Sn, a ) x so Intl )→ Wcsh
,
e)

(X, g) 1→ Eg (t)
(" t

Equivalently , there is a homomorphism of groups
op

so (htt)- U( L2 (Sh, Q ) )
G. z)

g i- Eg

where for a group G the opposite group
GOP has operation g*h=hg .

In summary

unitary

[ ( 5, E) D SO Cnn )

Example 13-2 Set an = LE einO E Els} E ) and note with g = Ra ESO (z)

Ep! Un ) = Ifa ein
Cota )

= ein dein O = in a

e Un

that is
,
{ Un }net is an orthonormal dense basis of L2(S5 Cl ) consisting

of simultaneous eigenvectors for all the Eg , GE Sok) .



⑧
Basic structure of 5013)

while we more or less understand 5012) acting on 4636 ), the case of 5013) is

currently less well-developed.

Next we recall the characterisation of SOG) as a group of rotations .

Def
" (3D rotations ) Given a EIR we define linear transformations
-

z

^

O O Ir"" = (
'

o wa -

aging ) y
x

O sind

Z

^

cost O sindR'a= ( o i

won ) i
.

Q
-Sind O

a
s y

2-

a

cost - Sind coRI = ( sina cosh %) it! s

O O x y

Given a unit- vector in = Rtg RYO - (et ) for OEOETL, OETCZTL , we
define a linear transformation

RZ y x y zRina =
y Ro . Ra RE - o R - y

2-

a

E¥toes⇐# 9.→ ii
y

'

i
-

,
c

'

i dyX to



⑨

Exercise 13-5 Check that Red = RI
,
REL = RL

,
Red = RI and that

Rina E SO (3) for all unit vectors in .

Exercise L3 - b lil Prove that the function 5x [0,21T)→ SO (3) sending (ii
,
d) to Rita

is surjective ( Hint : characteristic polynomial) and continuous .

Cii) Define ( in
,
a ) - ( in

, p ) if Ria = RTs . Give an explicit description
of the relation ~ on S

'

x [0,21T ) .

Exercise L3 -7 Continuing Ex L3 -2 let C be as given there with a ab and ccd and consider

the restriction map

C-Hc : Cb ( 5, e)→ Cts ( C, e ) .

Prove this is linear and bounded with respect to the E-norm H - Ik and thus

constructa continuous linear extension C-Hc : Lysa, e)→ ECC, e )
.

Use the Riesz representation theorem to prove that C-He admits an adjoint
E -

- LTC , E) → LYS 's E)
,
that is

,
a continuous linearmap satisfying

< ELY)
,
y > = CX

,
Tlc > Fye ECC, a) , YELYS ? E)

Given YE CtsCC, E) give an explicitdescription of a sequence an E Cts (S3 e)

with an→ ECT) in Lys ? E)
.



④

Harmonic polynomials

the analogue of the orthonormal dense basis { einYnez of L2 (S3 Q) for the sphere
are a class of functions known as spherical harmonics. Wewill construct these functions

as restrictions to 5of harmonic polynomial functions on IR ? In the following n is

an integer n7 1 .

DEI Let 7 (n ) denote the G-vectorspace of polynomials in n variables

xy .
.
- pen with complex coefficients .

We denote by Pk ( n t the subspace

of polynomials homogeneous of degree K so .

Mn ) = ⑦ k>o Pk (
n )

.

Example ↳ -3 % ( n ) = Q1 , I (n ) = EM O - - - A Clan
,
Pz (2) = Expo pea Cixi

.

Exercise 23 - 8 Each f-( Xi, . - -

, xn ) EP (n ) determines a function f -

- IR
"

→ Cl

and we let P'(n ) E Cts ( R
"

,
Q ) denote the Cl - linear subspace of such polynomial functions .

Prove that the map Pln )
→ P

' (n ) sending a polynomial to its function is an

isomorphism of E-vector spaces .

Exercise ↳ - 9 Prove that dime Pk (n ) = ( n t tf
- t )

.

1-of course
Some notation : a

, f will stand for multiindices , that is, elements of IN
"

and o c-Nj

Kl means d , t
- - - tan

,
xd means sci ' - - - Xuan

. We write Ea for Edear .

Def Given PE Pln) with P
=E card we define a Q- linearmap
x

J (P ) : Pln)→ 7 ( n) by

JCP) = [ c,
2K

x 2xY '
- - - - 2xnan

( IO -
t )

Example L3 - 4 2 (aft - - - tan ) is the Laplacian D= Zip t - - - t ¥cp .



④

Given P = Elmer Cd xd we denote by F the polynomial Slatkin Xd.

Lemma L3 -2 For 1270 the E-vector space 7k
(n ) is a Hilbert space with

L P
,
Q > = ( 2 (Q ) F)const Cll . 1)

Proof Define a pairing C-, -7
'

on Bath) by

,
meaning a ,

! - -
- an !

(⇐named , faband] =
,
Eka ! a-aba cuss

dimPkk)
(scaled byThis isjust the standard Hilbert space structure on Cl

factors of a ! but these do not change that the pairing defines a Hilbert space) .

We claim that LP, Q) =L B Q >
'

forall P, Q E Pk (n ) . By construction

L- I -7 is linear in Q and conjugate linear in P, so itsuffices to prove this for

P = xd and Q = XP
.

But < xd
,

XP > = 0 if d -B has any negative entries ,
and if di Zfi for IE is n then

y
l Pl

( xd , xp >
= ( *cpn ( x Y '

- -
- and" ) )wrist

- I i
.

- - - xi ''' - - xin
-

Tom
.

d !
= (⇒ xd -B)const

= d ! Sa =p = Lad
,
xp > ! D

Exercise 13-10 For B Q C- Pln ) show that 2 ( PQ ) =3 ( P) 02 (Q ) as linear operators .

We sometimes write L-I -7k to indicate the pairing on Pk (n ) .



⑤

Multiplication by Q is adjoint to operation by 210) :

Lemma L3-3 Given PE Pkk )
,
QE Peth )

,
RE Pm (n ) with Ctm = k

( P
,
QR> = ( 2 (E) P

,
R) ( iz . I )

Prof Using Ex 23-10 and observing 2¥
= 2 (E)F

L P
,
QR> = LP

,
RQ >

= [ KRAFT const
= ( HR ) ( NQ) F) Ionst
= L2 (E) P

,
R)

. D

In particular if PE Pkk ) and RE Pk -z (n) we have

( P
,
Capt - - - tan ) R > = ( DP , R) ( R -2)

We write Half for aft - -
- tan .

Def the space of complex harmonic polynomials of degree k is

Hk (n ) = { PEK (n ) / DP = O } ( iz -3)

Example 13-5 The following polynomials are harmonic when n =3, ( k=0 ) 1 ,
( k= 1 ) x, y, Z (k=2) x' - y

'

, xy , YZ , y Z ( K =3) 3y2z - 2-3, xyz

this is clearly a Cl -vector subspace, but it is not clear yet what its dimension is , or why
we should be particularly concerned with this class ofpolynomials .

Butas we will see
,

these polynomial functions are dense in Lys ? e) !



⑤

Theorem 23-4 The map D
: Pkk)→ Be-2 (n ) is surjective for all n

,
be 2 and

7k (n ) = Hk (n ) ① Half# ( n ) ( 13.1)

T
an internal direct sum

Proof Note that if 12<2 then vacuously Bath) = Hk (n ) so in a sense (13.1 ) also holds in these cases .

The subspace Hk In ) = Kerb is closed ( in a finite -dimensional Hilbert space every

linear subspace is closed ) as is ImD E Pk - z (n ) . Hence by (MHS, Lemma 220-7]

7k ( n ) = Hk (n ) ① Hk (Mt
( 13.2)

7k-z (n ) = Im D ① ImDt

But if Q E ImAt then by (12-2)

L Hall
'

Q
, Hall

'

Q ? = L D Hall
'

Q , Q > = O ( 13.3)

hence 1/04129=0 in 7k (n ) whence Q = O in 7h -z (n) .

So Im Dt = O

and hence ImD= Pk - z (n )
, proving that S is surjective .

We have used that

multiplication by Half is injective as a map 7k-ah)
→ Pk (n ) which is easily checked .

To prove (
B - l ) we observe that 1104129k - z ( n ) E Hk (n )

t

by (12-2) .

and since D is surjective

dim 7k ( n ) = dim 9k - z (n ) t dim Hk (n ) i 13.4 )

while from ( B -2)

dim Pk Cn ) = dim Hk (n ) t dim Hk ( n)
t

.

( 13.5 )

Arithmetic gives dim Pk-a (n)
= dim Hkln )

+

and injecting of hell't) implies
that 11×112/2 - z (n ) = Heldt as claimed -D



④

Corollary L3 - 5 Let k = 2at b where a
,
be IN and be to, I} .

Then for n
,
k72

7k ( n ) = Hk (n ) ① Hall
'

Nk
-z (n ) a - - - ① Hoc 112

a

2lb ( n) ( 14.1 )

Proof By induction on k with n fixed . The base cases are 12=1 or 12=2 which both follow

from the theorem .

In the case k =L we read ( 14.1 ) as B Ch) = Hi (n )
. Suppose ( 14.1)

holds for all integers Ek and use the Theorem to write

Pkn ( n ) = Hati (n ) a 1104513
- i (n ) .

By hypothesis 7k - i
( n ) = Hk - i In ) 0110412Hk - z Cn ) A - - - A Hall

Za
'

2lb . (n ) where

k - I = 2 a' t b
'
and b

'
E LO , 17 . Then it follows

Bati (n ) = Hiatt ( n) O Hall
-

Ha , ( n ) a- - -
- a 11×114

" t' '
te bi (n )

and Kt I = 2 ( a ' ti ) t b
'

. D

Now for the magic ! Notice that Hall =L on 5-
'

so 44.1 ) says that when you
restrict any polynomial function to the sphere it is a sum of harmonic polynomials .

More carefully by Exercise L3 - 8 we have a E- linear map

restriction

7 (n )- Cts ( IR
"

,
Cl )- Cts ( S

" '

,
E ) ( 14.2)

k

Lemma L3-6 The map ( 14 - 2) is injective .

Proof If PE Pkk ) then as a polynomial function it is easy to see that for x E IR
"

,
X E Q

we have PC Xx ) = Xk PCx) and hence if Pls n - i
= Q Isn - i we have for x # O

P (x) = PC Hall .⇐ x ) = Hall KP(Eu ) = Hall
"
Q ( 1) = Q (x ) .

If k=o the

claim is vacuous and if k> 0 then also Plo) =Q (01=0 so we're done . D



④

Exercise L3 - Il Check that the topology on Pk (n ) associated to the pairing L-I -7

is just the topology on ①
dim%")

using the basis { xd }Kkk and

that the map 7k In )→ Cts ( Rh
,
Cl ) is a homeomorphism onto its image .

DEI A degree K spherical harmonic on S
" - '

is a continuous function f : S
" - '

→ Cl

in the image of the map ( 1270, n
32 )

Hk (n )→ Cts (pi
,
a)> Cts Csn

- I

,
Cl)

,

that is
, f is a restriction of a harmonic polynomial function of degree K .

The subspace of all spherical harmonics of degree K in Cts ( S
" -t Cl )

is denoted Hk ( Sh
- ')

.

Lemma L's -7 The inducedmap Hk
(n )→ Hk (S "

"

) is an isomorphism of vector spaces .

Proof It is surjective by definition, and injective by Lemma L3
- G - D

Theorem L 3 - 8 The Q- linear span of Uk > o Hk (S
" " ) is dense in Cts (S

" - '

,
Q )
,

with respect to the H-Ha norm .

Proof Let Poly ( S
" - t

, E) denote the restriction to S
" - '

of polynomial functions on IR ?

By stone - Weierstrass (MHS, Corollary Llb
- 4 ] this subset is dense in Cts ( S

"
- t
,
Q)

in the compact-open topology (i. e. the topology from the H
-Hao norm)

.

See

[MHS
, Lemma La- I ] for the difference between IR - and G-valued functions .

But if f E Poly (S") Q) is the restriction of PEMn) then writing P -Ek Pk

as a sum of its homogeneous components Pk E 7k (n) we can by corollary L 3-5

write Pk (uniquely) as a sum



④

Pk = Hk t Half Hk - z t Hall
"
Hk - y t

- - - t Halfa Hb ( 16.1)

where H i are harmonic polynomials of degree i .
But realising these as functions on

IR
"

and restricting to Sh
- '
= {x ER" l Hall = I } leads to

Pk Ign - I
= Hk Ign - i t Hk- z Isn - i t - - - t Hb Isn - i ( lb . 2)

.

from which the claim follows . D

Put differently
, every continuous

E-valued function on S
" "

can be arbitrarily well-approximated
in the sense of H - Hao distance by a sum of spherical harmonics . Remarkable ! In particular
we have found a natural dense subset of the Hilbert space of the sphere :

corollary L3 - 9 The G-linear span of Uk > o Hk (S2) is dense in L'(S2, Cl ) .

Prod the span is dense in
Cts (S3 Q) with respect also to the H - Ha - norm ( see the technique of

(MHS
, Lemma L2I -2] ) and since Cts (S3 Cl ) is dense in 1452, Q) by construction

this completes the proof . D

Example L3 -6 Consider the harmonic polynomials of- y
'

and xyz of Example 23-5.

In spherical coordinates (1.3 ) with x, = x, xz
= y

,
x,
= Z

(of - y2) I gz
= sin20 cos29 - sin20 sin' Y = sin20 cos (29 )

(xyz ) Is = since sin Y cosy cos 0

Exercise 13-12 Prove that for k, n > 2 dimHk In ) = (ht k£1 ) - (
n tht? )

.

Next we want to argue that Hk
(S2 ) is orthogonal to He (S2) ifktl, which we can

then use to construct an orthonormal dense basis of spherical harmonics for L2 (S3 Cl) .



Smooth functions on the sphere (results and exercises here are labelled " B
"

,
as this section

can be skipped if you know differential geometry )

Next we want consider a differential operator, the Laplacian, acting on functions on

the sphere .

That means we need to decide what the derivative of such a function is .

Using spherical coordinates thismightseem straightforward : we have from Cl . 3) a

✓ 4--0=2I
surjectivecontinuousmap

j
[0
,
IT] x (O, 21T )→ S2

( lb y .
I )

( O, Y ) l→ ( s in O cosy, since sin Y, cos O)
•

This of course not injective : j (0,9) = (0,0, l ) and j ( Tif ) = (0,0,
- t ) for all T

,

butj is injective when restricted to (O, Tl ) x (0,21T) , the image of which is the

complement U E5 of the red line in the above diagram .

Deff A continuous function f : 5→ this j -smooth if

( O, TL ) x (O, 21T ) S
-£-7 IR ( 16

.
I - 2)

y
at b

is smooth in the usual sense
,
that is the derivatives⇒b (foj ) exist forall a, b70 .

Note thata function can be j - smooth but
" behave badly

"

across the line 9=0 on

the sphere, by having forexample

f-(E
,

h ) - f-(E
,

O) f (E
,
o) - f- (E , 2T- h)

Iim
a- t

lim-
h→ o h→ o h

In this case IT may exist as a function on 10, TL)x (o, 2K ) and thus U
,
but itmay not

be periodic in the sense that it extends to a continuous function on all of S? This goes to

show that smoothness on U is not enough to define smoothness on S ? The solution is to

consider both U and another "coordinate chart
"

of the same kind .



2-

a

spherical coordinates

OEOSTL
x=rsinOws9 oh

r

• (x. y ,z)
- O ET L 21T

y
- rsinosing :

Y '

z = rwso L

!
L t! dyX '

•

( 16-2 - t)
Z

X

att spherical coordinates
•
.

T OEO'ECT
-

is

sin @
'
cosy

' §-

-

'

"

i. ( x , y, t) off
'
LZTL

x= - r i r
e

y = rws O
' O ' )

z =
rsinclsinhf '

at >
y

we have two homeomorphisms associated to these coordinates j . ja
't
as defined below

and the open sets U :=ImCj ) , V = Imljatt) cover S2 ( that is, 52=0011 ) .

-

(0,1T ) x ( 0,21T) -7 S2 - Uc

( o,yji→ (
since

cosy
,
sinOsiris

,
wso)

.
.

• -
Vc

- alt

(O, TL ) x ( 0,21T) £7 S2
•

(ol, y
' ) 1-7 ( - sincehost, WSO

'
,
since

'sing
') ( 16.2.27

We say f-STIR is jalt-smo-thiffojattissmoothli.e.zffatbzyiblfoj.at) existfor
all a ,b7O . Finally :

DEI A continuous function f :S
'
→ IR is smooth if both foj and fojatt are

smooth functions on (0,1T )xlO, 21T) . A- complex-valued function on S2

is smooth if its real and imaginary parts are both smooth .



Note that on the overlap Umlwehanetwosetsof "competing
" coordinates 0,7 and O! Y

'

where we view 0=0407,9--740) as functions of peu (resp . 059
'
and V ) using j

'

(resp- Jatt) - ' ) so that ( Ocp ),YCp ) ) :- j
- ' (p )

,
(O'Cpl,y4p) ) -_ (jatt)

- '

Cp) .

How do we express (0,9) in terms of (01,9
') as functions on UAV ?

arcws :(- I , 1)→ (0,1T )
First- recall that

j

-
( O, IT)x(0,21T) U
-

° "

j
- '

(x,y,Z)=( arccosfz)
,
arglxtiy ) )

( 16.3.11
- alt

→
(0,1T )x(0,21T ) V

O
'

y
'
#

(jatt )
- '

(x,y, 't ) = ( arcwsly ) , aryl -xtiz ) )

( 16-3.2)
Hencewehave

1-
- -

- - - -

I -
Uc

:÷÷÷¥: ÷:
•

g- alt)
- '

( u)
j ja

't

- -

j '(v) UN ( jatt)
- '

lo )
- -

j
- '

(jatt )
- '

(jatt)
- '

j ( O,y) -_ ( arcwslsinosin 's) , arg( - sihOws9tiwsO) ) ( ( 6. 3.3 )

j
- ' jattfol.gl/=(arcws(sin0lsinY'),argf-sindios9'ticos0 ' ) )



④

The functionary (x tiy) can be expressed using the inverse arcfan : C- o, a)→ C-E
,
I) as

a function on IR
' I { (x, o ) l xx o }

a. i.+ in = ¥7:L
":L..Tko '

. . . . . .. .

-E - arctan (Hy ) y co{ araanm.IE ::::3::aretan (Y Ix )

this is a smooth function since arctan is
,
and Targ (x tiy) = ( Etty i x¥yz )

.

Hence

( 16.3.31 is two smooth maps, mutually inverse, between j
- ' l V ) and Cj

att)
- '

l U )
. That is

,

the change of coordinates

O
'
= arc cos ( sinOsiris)

,
Y
'
= arg ( - sinOcosy t IwsO) ( 16.4 . l )

is smooth as a function of 0,9 in the sense that both expressions are smooth on Cott) NO, 21T ) .

These two set of coordinates give (in principle ) two "different
"

ways to define differentiation on
S ? '

DEI For TECO, Tl) x (O, 2K) open let C
-(T) denote the IR- linear subspace of Cts (T, IR)

consisting of smooth functions . Tor W E U and Q EV open we define

CF (W ) = { ft Cts CW, R) / foj e Cay ,
.
. , w g y ,

smooth accordingtoj

Caja* (Q )
= { f-Ects (Q, IR) I fojdt E ( Jatt

"

Q ) )
- smooth according to jatt

These are IR- linear subspaces of Cts CW, IR ) and Cfs (Q, R) respectively .

i

÷
.

"t

.

:
j

'
w



On theoverlap the two coordinate systems agree on which functions are smooth :

Lemma L3B -2 If WE UAV is open then CF (W ) - CFA ( W) .

Proof Consider the diagram obtained by restricting ( 16.3.31

j jalt

j
- '

(w )
>
W
'

(jatt)
- '

( w )
L s

j
- '

µ cjaH5
'

¥
R
e#H

Given f-Ects ( W, R ) we have (since (ja
"-510J , j

- ' ojatt are smooth , and by the
chain rule the composites ofsmooth functions between open subsets of 1122 are smooth)

f- E CF (W ) ⇒ foj e C
-

( j
- '

w )

⇒ ( foj ) . ( j
- '
o jatt) E C-( (jatt)- ' w )

⇒ fo jake c- ( (jatt)
- '

w )

⇒ feofaitlw ) . D

So finally we can define which continuous functions count as smooth, on any open subset of S2,

using both coordinate charts
in tandem :

DEI Given WE S
'

open we say a continuous function f : 5-7 IR is smooth if

flunw C- Cj (VAW ) and thinWE Cjalt (VAW ) . The set of all smooth
functions is denoted C-(W ) E Cb (W, IR ) .



Exercise 1313 - I (a) Prove that (W) E Cts (X, R) is a IR- linearsubspace
(b) Provethat if WE U then (W ) = CF (W ) and if WEV

then CTW) = CFA (W) .

The nextexercise shows that cat) is a sheaf on S2 (we will discuss sheaves later) .

Exercise LSB - 2 (a) Prove that if W
'
E W is open and f e (W ) then ftwi E (W

' )
.

=

(b) Prove that if WE S2 is open and I waken is an open cover of W

(that is
,
forevery at A Wx is an open subset of W and UaeAwa = W)

and { father is a family of functions fat C- (Wa ) such that

fatwanwp
= fplwanw, for all a ,BE A- then there exists a unique

f- e co (W ) such that Hwa = fa for all aEA .

(Note : the empty cover is a cover of ¢ and yields (8) = 1*3 )
.

Differential operators on the sphere

Now that we have defined the sheaf of smooth functions Wt (W) on S ' we can

define operators Fo , Fy , Foi , Fi . These obviously depend on the chosen coordinates
but certain combinations (such as the Laplacian ) do not . Recall U - Im Cj ) , V = Im (j

att)
.

Deff Given WEU we define an IR- linear operator Fo : (W ) → c-(W) by

±
⇒

c- Cw)- c
-

( j
'

w )
¥ c-Cj

- '
W )- c-Cw)

f)oj f) oj
"

where the outer maps are ft foj and gt goj
- '

respectively. Similarly we define
% y and using jatt, V in place of j , U we define Zo ' , Fyi on C - (W) for any
open subset W

EV
.

How can we extend these operators to arbitrary open subsets WE S
' ?



Lemma 2313-2 If WEUAV is open then for ft (W) we have

If Foi tweets'm Fei
a . ." ,

¥ - I.info#iEoi-w:tfIIToEe.

as elements of C
-

CW)
.

Proof By definition Iof is the top row in the following commutative diagram
G) oj

- I

c- (w)→ c- Cj
- '

w) c- Cj
- '

w)→ c- (w)
a

ctoja
" I jatt

- '

j e,oj¥
,

I E) oja
't - '

X

C-(ja
't - ' w ) c-( jatt

- '
w)

( 16.7 - 2)

where by ( 16.3.31 the map I is defined for g=g( 01, y
' ) E C
- (ja

't - '
w ) by

I(g) = Iof gojatt
- '

j ] o j
- '

j
- att

T
'

re-
= Fol g ( arcus ( si nosing) , argfsinowsytiwso ) ) ) oj -y- att

chain rule

= ( Fo,fIotf÷fIo]oj - ' ja 't In arcwscuk.IE

Now with a = sinOsiny , and a = - sinOws 9, b= cos O

foI=¥g Focus = -Is%f;nE ( 16.7.37



ft = Fa argfatib) Fo t Fb arglatib) ¥0
o< Oct i. since to

=a¥bzfwsOwsY]ta¥I- since]
cosy

=
ws2Ows9__ + since =
-

cos
-Otsihows'T cos

-Otsinzdcoszy WHO t WSZY

Hence

Hgs - f-IYins.io?inE3Toitw+.ows#fIifoj-ijatt

and so referring to (16.7-2) , given f : W -7112 smooth and writing f-(01,9
' ) for fog

- att

Zf

To
= I ( floss ' ) ) o jatt

- I

- cousin 's 2f cosy 2£
=

Tiny -20 ' t w¥szy2y '

as claimed .

Let Io fit in a diagram like (16.7- 2) butwith IT replacing Fo - then

I (g) = # ( gojatt
- '

j ] o j
- '

jatt
T
'

E-
= ¥19 ( arcwscsinosiny ) , argfsinowshtiwso ) ) ) oj - g- att

cha
-mule

µ +2¥,2I]oj'ja 't=

zoizy 29

Now with u=sinOsinY and a= - sindooshf b=cosO



④

IF = ftuarcwslu)3F=¥u, since cosy = -sinOa=I - sinosiny

If
'

=

fzarglatibjfaytfbarglatibBF-a-bfbzsinosint.tn#b- O
.

=

- sinowsosin's - cohesin 's
- -

sinews 'S task
=

cosuftcoto

Then we derive the second formula in ( 16.7.11 as before - D

Exercise 1313-3 (a) Provethat for WE open the subset
(W) E Cklw, IR )

is closed undermultiplication and hence ( in combination with ExL3B-I )

that C- (W) is an IR-subalgebra .

(b) Let HomR(4,42) denote the R -vector space of linear transformations
between vector spaces Vyllz .

Prove that for WES
'

open with

Tfw) = Hompl CTW)
,

( W) ) the map
multiplication in (W)

a : (W) x TCW) → JLW)
,
alf, f) (g) = f

! 91g)

makes Tfw) into a left (w) -module
.

With the notation of smooth functions acting on operators from ExL3B -3 ( 167.1 ) can

be written as an equality of elements of TCW)

- WSOsin 's a cosy 2
I =
g-

- t
-

ZO l - sindsiny 20 ' WEZOTWSZY 29 '

( 16.9.13
2 - shows's a

-

cousin 's 2
- =- -
- -

29 FEW 20
'

cosy tutu 29
'



④

The Laplacian

We are now prepared to define the Laplacian Ds on C- (W) for WES
'

open .
We define

it first on coordinate patches and then argue that these operators
"

glue
"

together . Tor WEU

and Q EV
,
FEC- (W) and GE (Q ) we define

DICH -

-

= silo #( sino Fo ) t IIT in . , ,

D's's (g) i. = To,( since 'f% ) t 13¥ in . 2)

These operators DJs : (W)→ CTW ) and D 's's :C - CQ )→ c- (Q ) are linear
.

Lemma 2313-3 For each open subset
NES

'

there is a unique IR- linear operator
Dsz : c- (W )→ CTW) such that the following diagrams commute

Dsz Doz
c- (w ) s c- Cw ) GCW) > c- (w)

(17-3) Hlunw Hlunw Glum Ctlvnw

X X X Y

column) > column ) C-fvnw ) s C
- Cvnw )

u v

Dsa Ds-

Proof Uniqueness and linearity follow respectively from the sheaf condition (Ex 1313 -2lb ) )

and the linearity of Dia, D's's so itsuffices to show that for f- C- CTW) we have

Did flunw ) fun
,nw
=D 's's ( thaw ) lunynw (17-4)

It this holds then Duszlftunw ) E ( UAW ) and Dj's ( flvnw ) C- Coo ( vnw )

satisfy the compatibility condition of Ex L3B -2lb ) for the cover { UAW, VAW } of W

and hence Dolf ) c- C- (W ) with thedesired properties exist .

To
prove ( 17.4)

itsuffices toprove Did 9) =D (9) where g
- flunvnw

. More generally , let

TEUNV be open .
Then for GE Cd (T) using Lemma 2313 - 2



①

wewniea-I.si:6#g.b--wFoFa.c--Iinin9IsinI.a-- I:tIo
so that

Zo = a Foi t bFi
, Fy = c Fo ,

t d Fy, Ch- I . 1)

Then we compute

Did g) = Fo( sino to ) t ¥9

= wso ft t since:# It III
"? I 'D

= cotof a foot, t b II. It Fola Ito ,
t b IF ] tanto Ifc foot. td IF ]

= a cotoff, t bootoff, t IF fat , t a Fo Ito , t Izzy ,
t bFo IT ,

+ Iot, t sinko CIII , t IF IT, t sink d Eff ,

Now

⇐ foot, = a IoT. t b 3¥20 .
. Eoff, = a Io¥e ,

t b IIF
en .

. . , ,
22g

Is Ito, = c III. t dayton , Effy ,
= gf¥p , t d:-#

Hence

Did g) = ( auto t Zo t since } FT t ( booto t Fo tanto F)Hq ,
d2

+ { a' t Tino } IITs t { b't - ) IFT
s in20

( 17. I .4)

+ lab tab t Tino Tino } Iffy ,



⑦

- cos O sin 9 - si n Ows's

a =g . b=wFoy
,

c -

y , d=jII%io
a
'

ts,
= 1

,

b 't
1-

One checks that sin-O
=

sin
-

O '

auto t Zo t , Fy = cot-O
'

booto t Zo tanto # = O

ab t cdsinzo = 0

Hence

Did g) = Ift t wto ' II. t s IITs = s 's's (g)
. D

Exercise L3B -4 If W
'
E W E S

'

are open prove that

Ds2

c- (w) s ( w )

C-Hw'

e,

Gtw '

X

c- (w
' ) s (w ' )

Ds 2

commutes . We say Dsa is a morphism of sheaves .

The operator Dsa (or really the family of operators on C
- (W) for each open WES

' ) is called

the Laplacian .

The Laplacian is defined intrinsically lie .

withoutchoosing coordinates)

on any Riemannian manifold (on IR
"
it is Dpa = II t - -

- t ÷p ) butfor this

course we will make do with the above construction by glue ing operators over an open
cover of S ?

✓

Exercise L3 - B Prove that for a smooth function f- on 1123 the following holds on IR
'

Vo)

D
,
f = rt Fr ( r - Fr ) t rt Dszf ch- 3)

.



⑧

Lemma L 3 - 10 For every harmonic polynomial PE Hk (3) the restriction f-
= Pls z E Hk ( S2)

is an eigenvector of Dsr with eigenvalue - k ( I t k ) .

Proof By directcalculation using ( 17.3) .

We have for r > O and XESZ an expression for

P in spherical coordinates P ( r, O, 9) = rkf ( 0,9 ) and hence

o = Dp = rt # ( r- II ) t rt Dszp

= rt Frfr ? K . rk - ' f ) t rtzrkDszf

= tf Fr ( rttkf ) t r k
- Z

Dszf

= K ( I t k) r
k- Z f t rk

- Z Dszf

so Dsu f = - klltk) f as claimed . D

DEI A continuous function f:S
-

→ Q is smooth if The Cf)
,
Im (f) C- C- (S2)

and we denote by C- (S3 Cl) Ects (S3 Q ) the E
- linear subspace of

all smooth functions .

The Laplacian extends to a E- linear operator on C- (S2, Q) by acting separately

on the real and imaginary parts : Re (Dszf ) = Ds -Ke(f )
,
Im (Sszf ) = Dsz.IM (f)

.

Lemma 23 - 11 Given f
, g EG (S3 E) we have

f. DIF gals = Is . F Dog DS ( 18.1 )

we will return to this proof momentarily , but first we want to examine its consequences .

In the following we write akin for dime tlkln) .



④

Theorem 13-12 We have a direct sum decomposition
co

↳ ( S3 e ) = Ot Hk ( S2) (19,1 )
12=0

in the sense that the summands are closed
, pairwise orthogonal, and every FELTS ? Q)

can be written uniquely as a converging series

f- = SKI fk fk C- Hk ( S2)
.

119.2 )

Boot Let k¥1 be given , and let f-ERNST, 9 C- Nets) . Then by Lemma 23-10

we have Dszf = - ktttk) f, Ds- g =
- l ( Itt ) g and hence by lemma L3 - Il

( f, g > = L
-k¥5Dszf , g )

= - HettyL f , Dr97 ( 19.3 )

l ( Ite )
= It t f, 97.

Suppose Lf, g> to then let
Ite) = klItk ) which implies f- k a contradiction

( the function xtx is increasing for x > o)
,
hence Cf, 97=0 as claimed . The

subspaces HHS
' ) are finite-dimensional, hence closed .

Now let ( Y
'

k ,
. . -

,
Y YI } be an orthonormal basis for Hk (S2), produced

say by the Gram
- Schmidt process . Since LY ,

Y ie 7=0 whenever ktl

the set 13 = { YE }Kao, ie is ak.

is a countable orthonormal set . Moreover

Uk>o Hk ( S2 ) E spanof so by Corollary L3 - 9 the set13 is an orthonormal

dense basis for L2 ( S2, Q) .

The statementof (19-2) now follows from

[MHS, Theorem L 21 - to] with fk =I ⇒LYE , f > YE . D



④

Proofof Lemma↳ - 11 Writing f- = fret if
Im

, g
=

gRet zig
Im

suppose ( 18.1)

holds for real -valued functions f, g. Then

< SSI
, g > = ( ¥etDszfIT ,

GR't ig
Im

)

= ( Dszf
Re
- i Dszf

Im

, gRetig
Im

)

= L Dszfke
, g

Re > t i ( Dsa f
Re
, g
Im
>

+ i ( Dsa f-
Im

, g
Re ) - ( Dsa f-

In
, gin) (w . , )

= ( f
Re

,
Asa g

Re ) t if f Re
,
Ssag

Im

>
+ if f- Im, Sss g Re> - ( f

Im

,
Ssa g

Im

>

= ( f
Re

,

Sss g ) t L - if
Im

,
Asa g )

=L I
,
bag )

note that the way the

So we may assume f, g Ral . We need to show / integral is definedwe
need only use one coordinate chart

f.
"

f! I Fol sino Ff ) t If } 9 sincedad 's case,

= [
"

fo
"

tf Io ( sino Fo ) t ftp./sinOdOdY .

No problem !
E

d
r

& (
x
, y , z )

i

e :
i

×

L
'

I
.

>
y



②

Cancelling the factor of sinO and reordering the integral gives for the RHS

f?I!fFo( since Zo ) does tf!# f !
"

t III. dydo HI

and for the LHS

[
"

f
"

g Fo ( since Sfo ) dads tf!
o

"g3¥d0d9 HH
O O

set h= IT
.

Then via integration by parts are
"
move all derivatives onto f

"
:

[
"

f F'ads = I!ffFd9
= (th]! - J !

"

hffydy

=
- S

.

"

n'fed ,
" ' '"

Because f- = f- 10,9) is periodic in both variables by definition .

In particular
as a function of O, f-(O, za) - f-(0,0) = O

. This "periodicity t integration
by parts trick

"
is everywhere ( see e. g. (MHS, Lemma 221-37 ) and with a more

subtle property replacing periodicity it is a central idea in differentialgeometry . Anyway ,

continuing (21.1 ) and again using integration by park

=
- J!

"

FIFI dy (21.2)

= - f Ig # I
"

- S
.

"

's III de }

= I !gI¥d9



②

Hence the second summands in CK )
,
HH ) agree .

Now with h = since Ito

Jo
"

f Fo (sinoff )do = Jo
"

f Ito do

= (th ] ! - J!FohDO
czzi )

= - fo
"

Fo sinoffedO

= ( EosinO g ] ! t fo
"

Io (since Tfo ) gold

this time the vanishing of the f)
"

o
terms is because sin G) = sin ( Tl ) = O ( there is

no reason to assume flo) = f- (Tl) ) . This proves HI
= Htt) and completes the proof . D
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