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Lecture 5 - Angular momentum 1214121

updated 2614121

Driven to a large degree by physics, our mathematical conception of space has evolved rapidly
over the course of the last century .

The MHS lectures recapitulate the firstpart of this

evolution
,
from the study of spaces assets ✗ ofpoints with structure (e.g.metric or

topological spaces) to the study of spaces of functions on X, and finally to the Hilbert

space of ✗ ( vectors in which are notproperly viewed as functions, but rather signals
or wavefunctions propagating on X) .

In particular to the spheres S
"

we may associate function spaces
cts ( S7 e) and

the Hilbertspaces [( S
"

, E) , the cases ne 11,2} ofwhich we have studied carefully .

However this basic picture remains in complete . Space is not something we perceive directly .

It is what a neuroscientist or machine learner would call an inductive bias -

- a parsimonious

set of hypotheses about the structure of the world that efficiently compresses observations [ON, 91 ] .

This is different language foran idea already exposited in Lectures 1 and 2, namely , that

given information about a (quantum) system as obtained by one of a set of equivalent
observers we can analytically II. e. without recourse to observation) determine the state according
to any other observer in the set .

To perform this trick we need to know how to parametric
observers by elements of a Lie group (symmetry ) and how this group acts by unitary transformations

on Hilbertspace ( representation) .

Thus symmetry is revealed as a form of compression .

Now
, concepts like

"observers
"
and "measurement " mightseem outside the scope of mathematics,

butso too is the choice of which objects ( oraxioms) to study , and considerations like the above

strongly suggest that the correct mathematical representative of
"the sphere

"
is not S

"

or

cts (S", e) or even [(5, E), but rather
"
a Hilbertspace foreach observerand all

translations between them" or what is the same the representation 8 of Jofnti ) on LYSY e)

by unitary transformations .

What I'm trying to say is :

you have to care about the operators tz÷
- t} It

, of theorem 14-5 !
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So how should we think about these operators ? We focus on xz ¥3 - Xs ¥2 but everything
we have to say applies to the general case .

Let f = f(x i, Xz, Xs) be a function with

continuous partial derivatives on some open set U EIR
'
and let a c- IR ? Recall that the

directional derivative Dv (f) (a) off at a -

along a rector v EIR
'
is

lim
Hath")h

- Ha)
= EI

,

Vi ftp..la) ( z :D
h → O

and so given a function f we can interpret (K ¥3
- 43 Exa ) ( f) as the function

which
, given a c- IR

'
as input, returns the directional derivative

as II
,
(a) - as da ) ( z -

z)

off at a along the vector v = ( O, -93, as ) . This has a simple geometric interpretation :

X)

T
X

( O , Az , a 3)
A

T /
( O, -as, Az)→a

(2-3)
t

•

c.

\
(ay 0,0) >

Xz
X 1

We view a c- 1123 as lying on a circle of radius Taita centered at ( ai, 0,05 .
A normal

vector to this circle at a is given by ( O, as, as )T ( think of Ff where f- = at toes )

and rotatingthis by ¥ anticlockwise in the Xz- x, plane gives ( O
,
- 93,92) ? So the

directional derivative (2-2) computes fora function f defined in a neighbourhood of a,
the rate of change of f along the direction of rotation around the x, -axis using the

right hand rule . The operator Xz Fxs - Ks Exa sends each function f to the function which

computes this directional derivative at each point a EIR ?
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More generally , with in a unit vector and ti, tats being as in (H.
2) of Lecture 4

,
the

operator tz Is - t, ¥ computes a directional derivative tangent to a circle centered on the in - axis

and in theplane orthogonal to that axis, in the direction of right hand rotation .

This interpretation as a directional derivative makes the formula

fo Rina = exp (alt2¥, - t, It ) ) (f) ( 3. D

of Theorem L4 - S look very similarto a Taylor expansion around the sphere .

To explain , recall

that if we write Sa : R→ R for the operation Sa (x) = x t L then fora function g Ge)

with a converging Taylorseries expansion in a suitable open neighbourhood (e.g . any polynomial)

g (at a) = g ( x) t IT, d t I 212×222 t -
- -

= E ? o 3¥.

ai
es .

. )

= exp ( aFx ) (g)

That is
,
the usual Taylor expansion along a line can be presented as a functional equation

go Sa
= exp ( x Ix ) (9) ( 3.3)

expressing the action ong of the translation symmetry
Sa as the action of an exponential of

the differential operator a Fx - We are familiarwith the fundamental role of the Taylor

expansion in bridging the gap between the infinitesimal and the finite ; now we must learn

to view exponentials of differential operators as a more general and powerful tool of

the same nature .

Next lecture we will develop this insight into a general theory .



④

Def Given a unit vector in we call the operator Z
"
= tz¥z - ts Ftz (acting on Ba , Hk , or Hk IS4

as the case maybe) the infinitesimal generator of the symmetry Ria acting on functions

via the representation ft fo Rina .

Anytime we are presented with a linearoperator we are naturally curious about its eigenvectors
and eigenvalues .

If g
: IR→ Q smooth is an eigenvector of Fx with eigenvalue D then

Ix g = Xg ⇒ g = Ce
""

some CER (4. 1)

That is
,
the space of eigenvectors is one -dimensional and spanned by e

""
. In this case the RHS

of ( 3. 3) reads as

exp (a Fx ) (g) = ( GI. di ¥;] ( g)

= I o÷j di Tig (4.2)

xx
= e g

which of course matches the LHS which is go Sa
= Ce
"" th )

= edt Ce"= Cd 'g .

That is, for an eigenvectorof Fx the translation symmetry acts by a multiplicative factor . Naturally

we are curious about analogous functions on S2which are eigenvectors for the infinitesimal

generators 2
"

. By the same argument as in 14.2)

Lemma LS - I If f is an eigenvectorof Z
"
with eigenvalue X then

f- o Rita = ed " f Fa EIR
.

A continuous function f : S
-
→ Cl is in the kernel of Z

"
if and only if it is

rotationally symmetric about their - axis , I -e
. for = f for all he IR .



⑤

Next we turn to thequestion : whatkind of operator are the 7
" ? First recall that a linear operator

Ton an inner product space H is called self-adjoint it

( Tx, y > = ( x, Ty > Fx
, y c- H

.

Lemma L 5-2 (spectral Theorem for self-Adjoint operators ) If this a finite -dimensional innerproduct

space and T:X
→H is a self-adjoint operator then

(a) all eigenvalues of T are real

(b) eigenvectors corresponding to distinct eigenvectors are orthogonal

(c) it IF = ① then there exists an orthogonal basis of H

consisting of eigenvectors of T.

Proof (a) Suppose VEX is nonzero and Tv = iv. Then

Lv
,
Tv> = Lv, Tv> = ✗↳ v7

,

< Tv
,
v7 = ( Xx

,
x> = 54,

×?

Since Tis self-adjoint these are equal and hence as <v.v> 1=0, 7=5 is real .

(b) Suppose v, w -1-0 satisfy Tv = 7k, Tw =µw with ✗ til . Then

< Tv, w> = ( Tv , w> = ✗ ( v
,
w> , (using (a) F- 5)

< y, Tw>
= Lv,Mw>

=

µLv,
w> .

Since ✗tu we conclude Lx ,
w> = 0 and hence you are linearly independent .

(c) By induction on n=dimH .
If n=0 (so H=O) the basis is the empty set .

Suppose the statement holds for n> 0 and dimH=nt1 . Any operator T on a

nonzero complex vector space has an eigenvector 4 , say Tvo
= Xoxo let

H' be {Yo }
t

.
This has dimension In and we claim TH ' E N !

To see this note that if we H
'
then
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( Xo
,
Tw) = ( Tvo, w> = ( Xoxo, w> = Xo (Xo> W)

= 0
,

hence TW ER ! Hence by the inductive hypothesis H
'
has an orthogonal basis

vi. .
-

, YK consisting of eigenvectors for T, and since ✗
=

span a { vo } ⑦ H
'

the set { V0, Vi, - -
-

,
4k} is an orthogonal basis for H consisting of eigenvectors

of T. ☐

Lemma L5-3 ( spectral theorem for Unitary Operators) If H is a finite -dimensional inner product

space and U
:X→ His unitary then

(a) all eigenvalues of U have modulus 1

(b) eigenvectors corresponding to distinct eigenvectors are orthogonal

(c) if F- = ① then there exists an orthogonal basis of H

consisting of eigenvectors of U .

Proof (a) Let Uv = Tv with v40 .

Then

<v.v> =L Uv , Uv> = Liv , Xv> = IT < v.v>

and since <v.v> we have 1×12=57--1 .

(b) Let Uv = Xv , Uw =µw with 7th and v, w nonzero . Then

< ×
,
w> = ( Vv, Uw> = In <v. w> .

If <v , w> 1=0 then IM = 1 and so multiplying both sides by 7,
we have µ

= ✗ IN = 7 , a contradiction . Hence <y w> = 0 as claimed .

(c) As in the proof of Lemma 15-2 suppose H -1-0 and let Yo be an eigenvector
of U with eigenvalue to .

Itsuffices to show with H
'
= { "o }

+

that

UN '
c- set

.

Ifwe H
' then < Yo

,
Uw ) = < VU

- '
Yo
,
Uw> = LU

- '

yo
,
w>

.

But fwm U Yo = Ivo we obtain U
- ' (Vo) = 7-

'

Vo so < Yo, Uw> = I
- '

< no
,
w> = 0

. ☐

t
note by (a) that 71=0
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Let (H, 47) be a finite-dimensional complex inner product space .

We can find an

orthonormal basis 13 = ( v y . - -

s
Yn ) ( possibly n = o) and this induces an isomorphism

of complex vectorspaces

Cp
H s en

(7. s)

Cp ( Ein , aiVi ) = ( ay . . .

,
an )

This is an isomorphism of inner product spaces if we define the pairing 47 on the

standard basis ey . . .

, en of by Lei, ej> =L Vi , Vj> = fij so that (Q
"

,
47)

is the standard inner product La , b >
= Sii , ai bi where a, be E

"
.

If T

is a linear operator on H then there is a unique linear operator T
'

on Q
"

making the diagram

Cp
2e > an

T T
' ( 7- 2)

X x

H s en
Cp

commute (namely T
'
= Cp o T- Cf

'

) and T is self-adjoint or unitary iff. T
'

is so
.

In particular note that (H, H - H ) with the norm induced by 47 is isomorphic

as a normed ( hence metric ) space to ( en, H - H ) and hence H
,

47) is a Hilbert space .

Exercise Lf- I Let (H, 47 ) be a finite -dimensional complex inner product space .

We say a function f : H→ Cl is continuous ( resp . smooth ) if

for every ordered orthonormal basis§ the function 11221 an→ Q = 1122

given by fo Cf
'

is continuous ( resp. smooth ) .

( i ) Prove f- is continuous (resp - smooth ) if this condition holds for any § .

( ii) Prove that for any veH the functions Lu, -7, L
-M '

- H→ G

are both smooth
.
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Lemma L5-4 LetH be a finite - dimensional complex inner product space and T
'

- H→ N a

linear operator . Then T is self -adjoint itand only if e
it

is unitary for

every d EIR . Moreover every unitary operator on His of the form e
itfor

some self-adjoint operator T.

Proof Suppose Tis self- adjoint . Then using Ex L5- I

< eitx , city > = thing, IET,
it Tix

,
e
it

y >

↳ x> cts

= high ( [JI it Tix, eity 7

= him [j=oj÷ fi)
'
L Tix , eity )

h→ 00

T self-adjoint (8.1)

= Iihf
,
Ejo C- ifLa

,
TieMy>

= nli→m Lx , Ej . f- if Ti eity >

4.→ at

= Loc,
'

high E
,
IT
.

C - it )
"
eiTy >

= Lx
, e

- it eity >
see Lemma B1- 9
\,

= Lx, y >

so e
it

is unitary . Now suppose that ein is unitary for all he IR so that

< x , e idly > = L e
- idTx

, y 7 Fx
, y c-H co- 2)

Differentiating both sides with respect to x ( if you like , reduce via the previous page
to the case of IC

"

and the standard pairing to verify the following)
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¥aLx , einy > = Iz L e- idtx , y >

:
. Lac

, adze idly > = ( IIe
- in
x
, y > qq.ly

:
.

L x , it eid Ty ) =L - it e- iMac , y >

Evaluating at 2=0 yields

(x, i Ty > = L - i Tx, y>

and hence Lx, Ty>=L Tx, y> so that T is self-adjoint .

Finally suppose U : H→ His unitary and let us . - -Nn be an orthonormal basis for tl

consisting of eigenvectors for U (Lemma LT-3) with say Uvf 1kVk then 17KFI

by Lemma L 5-3 Ci) say Xk= ei
Ok

.

Let T: H→ te be the linear transformation

1- (Vk ) = Okvk .
Then T is certainly self-adjoint as

( T ( Epi , akin ) , EI⇒ b Kuk)

= LEE ,
AKOKVK

, EI⇒bulk> (9. 2)
= EI⇒ InOkbk

= LIKE , akllk , T( EE , bkllk ))

and e
"
( via ) = e

""
Vk by the same argumentas in (4-2), so e

it
= U . D

The way to think about this is that every self
-adjoint operator T (an observably in the

language of quantum mechanics) generates a l-parameter family ( e
id Ttaek

of unitary transformations (symmetries of Hilbertspace ) .

In fact we will show later

that any reasonable I -parameter family of symmetries is so generated .



④

Lemma L5-5 Fork>i 0 the operator ER
"
on Hk (S2) is self-adjoint . Hence the

eigenvalues of Z
"
are all pure imaginary .

Proof By theorem4-5, 6 ( Rita ) = exp (22
") = exp ( i l - i d2

" ] ) and since
this operator is unitary itfollows from Lemma 45-4 that - i 22

"
is self -adjoint,

and taking at O gives the first claim .

For the second
, any eigenvector v of 2

"

with eigenvalue X is an eigenvector of it
"
with eigenvalue it , and since by

Lemma Lt-2 we have that it is real it follows that The (x) = O
-D

To say that
it is self-adjoint is to say that 2

"
is skew -self-adjoint , i.e .

( tix , y> = - L x, 2
"
y ) Fx

, y C-H

DEI we write Lii = - Eh
"
which gives a self -adjoint operator on Hk (S2) for 1270 . In

physics this is called the angular momentum operator associated to ri and for the

special cases of the standard coordinate axes we write (x⇒u, y⇒a
,
Z = Xs )

↳ = - ilxzzxz - Ks Fx) 6 ( RT ) = exp ( id Loc )

Ly = - ilks Fx , - ki Fxs ] b ( RL ) = exp ( id Ly )

Lz = - i ( x , #
z

- a fax
, ] 3 ( RZA ) = exp ( id L z )

we will not explain whatangular momentum is here
,
but see [ F, Ch .

18 ] for the

best presentation I know - Youwill find there the formula [F, 118.16 ) ] for the

angularmomentum of aparticle moving in the xy -plane to be xpy
-

yp.. where

the normal momentum is p = ( px , py, Pz ) . The process of quantisation replaces e. g .

px by - ih Fx so that xpy
-

ypx becomes the operator x (
- ish Ey ) - y l- ish Fx )

= ish ( y - x Fy ] which with 'h= 1 is Lz above .
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DEI A linearoperator T:X→ Non an innerproduct space (over either 11=-112 or E) is called
skew self-adjoint if

< x, Ty > = - { Tx, y > Fx
, y c-H .

Exercise 15-2 If F- = ① prove that Tis skew self-adjoint it and only if it is self-adjoint .

Recall that an operator Ton an innerproductspace His unitary if ↳ y> =↳ Ty ? Some authors

reserve the word
"

unitary
"

forcomplex innerproduct spaces and call such a Torthogonal if F-=/R .

We are not such an author.

Exercise 15-3 Let H be a finite-dimensional inner product space and T:X→ N

a linear operator. Prove that Tis skew self-adjoint ifand only if e
"

is unitary for all ✗ C- IR .

Exercise 15-4 Let H = IR
"

with the standard innerproduct. Prove that if T.IR
"

→ Rn

is a linear operatorwith matrix A c- Mn (R) that

Ii ) Tis self-adjoint iff . A is symmetric (i. e. AT= A)

Iii) Tis skew self-adjoint iff A is skew-symmetric ( i. e. AT= -A)

Liii ) Tis unitary iff. A is orthogonal lie .
ATA = In )

.
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