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Abstract. The theory of Lie algebras is fundamental to the study of groups of continuous
symmetries acting on vector spaces, with applications to diverse areas including geometry,
number theory and the theory of differential equations. Moreover, since classical systems
have conserved quantities derived from continuous symmetries, by Noether’s theorem,
and quantum mechanical systems are described by Hilbert spaces acted on by continu-
ous symmetries, Lie algebras and their representations are also fundamental to modern
mathematical physics. This subject develops the basic theory in a way that is (hope-
fully) accessible to both pure mathematics and mathematical physics students, with an
emphasis on examples. The main theorems are: the classification of complex semisimple
Lie algebras, in terms of Cartan matrices and Dynkin diagrams, and the classification of
finite-dimensional representations of these algebras, in terms of highest weight theory.

To the reader. In these notes, there are many many exercises. Some are almost trivial,
whilst some require serious thought. In both scenarios, they are intended to deepen your
understanding of the material being introduced. They are also intended to be solved as
we go, not at the end of semester or when they form part of a due assignment. Indeed,
the material that follows will often use the exercise’s result. In this spirit, every exercise
is supposed to be solved using methods introduced previously in these notes or in the
undergraduate curriculum. In particular, you are not supposed to use results that you
have encountered in other masters-level subjects, for example Differential Topology and
Geometry, or in private study. But if in doubt, simply ask!
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1. Introduction

Lie theory is named after Sophus Lie (pronounced “lee”), a Norwegian mathematician
who introduced and studied the continuous symmetries of differential equations, much as
Galois introduced and studied the discrete symmetries of algebraic (polynomial) equations.
Nowadays, Lie theory has expanded into a huge collection of work that aims, primarily, to
model the notion of continuous symmetry in all its many incarnations and applications.

One simple class of examples consists of the rotationally invariant systems in �3. The
symmetry of these systems is continuous because rotations in �3 may be parametrised by
three angles with continuous ranges (two angles to choose the axis of rotation in spherical
polar coordinates and then onemore to specify howmuch to rotate). In elementary physics,
this symmetry is responsible for the conservation of angular momentum. Consequently,
angular momentum is modelled by a Lie group. For angular momentum in �3, this group
is called SO(3) and we shall meet it properly soon.

Physicists come across Lie groups and their cousins, Lie algebras, all the time. Much
of the time, one can only hope to analyse (solve) a physical system with the aid of guiding
symmetry principles. Thus, Lie theory (or finite/discrete group theory) is often lurking in
the shadows of fundamental physics. An excellent example of this is the awarding of the
1969 Nobel prize in Physics toMurray Gell-Mann who noticed that many of the properties
of the plethora of fundamental particles being created in accelerators could be organised in
terms of the representation theory of another Lie group called SU(3). This breakthrough
led to quarks, gluons and quantum chromodynamics, a significant chunk of the standard
model of fundamental particle physics. We shall meet this Lie group soon as well.

Lie theory is brought to the fore inmodern physics research, especially quantum physics,
because symmetry is often the only reliable tool one has to uncover order in this rather
unintuitive world. The standard model, gauge theories, supersymmetry, integrability, even
string theory: all rely heavily on various flavours of Lie theory and its generalisations. In
fact, so too do atomic and nuclear physics, optics and even computational and spectroscopic
chemistry!

But Lie theory is mathematics. In particular, you won’t need a background in physics
in order to appreciate the subject matter, although we will make plenty of remarks to relate
the material to mathematical physics and will discuss a couple of applications to physics in
detail. Lie theory combines practically all of the main areas of pure mathematics including
algebra, analysis, geometry and topology. In many cases, the study of Lie algebras and
groups has also driven (and continues to drive) research in these areas. In algebra,
Lie-theoretic generalisations such as quantum groups, Kac-Moody algebras and vertex
algebras continue to be strongly represented in international research. Harmonic analysis
is essentially Fourier theory on (locally compact) Lie groups and ergodic theory, which
combines probability, thermodynamics and chaotic dynamical systems, is most naturally
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formulated on compact Lie groups. The geometry of Lie groups plays a starring role in
the study of many partial differential equations and their topological features represents
one of the primary motivations for developing algebraic topology, homological algebra
and category theory. No doubt you will see many more striking examples of the central
role played by Lie theory as you learn more and more mathematics.

In this subject, a first glimpse into the beautiful world of Lie theory, we will mostly
concentrate on the theory of complex semisimple Lie algebras and their representations,
with some discussion of the corresponding Lie groups. This means, unfortunately, that we
will not be seriously looking at the geometry and topology of the latter, nor can we delve
into the important question of how to do calculus and analysis on them. The reason is
the prerequisites: Lie algebras really only require a solid grounding in linear algebra and
an appreciation of basic abstract algebra (which we can learn as we go). Lie groups, on
the other hand, require more facility with geometry and topology than our undergraduate
curriculum currently offers. That said, they are excellent examples for illustrating many
aspects of modern mathematics so you will surely meet them again in other subjects.

We would hope that all pure mathematicians, and all the good applied ones (which
includes all mathematical physicists), would agree that Lie theory is an essential part of
both classical and modern mathematics. We trust that you will enjoy this first encounter
with this beautiful theory and expect that it will leave you wanting more, more, more!

Resources

As you’d expect for such a beautiful, important and well-studied field of mathematics,
there are many good sources to learn about semisimple Lie algebras and their friends.
Here are a few.

[1] K Erdmann and M Wildon: Introduction to Lie algebras.
This is a math textbook aimed at 3rd years at Imperial College London. It’s a very good introduction,
though necessarily brief in many ways. The authors also seem to have a bit of a thing for non-zero
characteristics (imho).

[2] J Fuchs and C Schweigert: Symmetries, Lie algebras and representations.
Also introductory, but aimed more at graduate mathematical physicists who need a solid grounding
in Lie theory. I like this book a lot, perhaps because it’s written by two leaders in my field. While it
eschews the theorem-proof style favoured elsewhere, it still maintains rigour when not inconvenient.

[3] P Woit: Quantum theory, groups and representations: an introduction.
A very recent textbook that aims to delve deeply into the group-theoretic formulation of quantum
mechanics. Perhaps not suitable for mathematicians, but excellent bedtime reading for math physicists.
Also available for free here:

http://www.math.columbia.edu/∼woit/

[4] J Stillwell: Naïve Lie theory.
A beautiful book that deals with matrix Lie groups in a very concrete fashion. It lacks motivation and
generality, but is well worth reading nonetheless.
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[5] B Hall: Lie groups, Lie algebras and representations: an elementary introduction.
A fine text indeed. Occasionally unconventional but very thorough in its approach. Make sure you look
at the second edition as it’s quite different to the first.

[6] W Fulton and J Harris: Representation theory.
This is a math textbook with an extremely good (and well-deserved) reputation. It uses the theorem-
proof style, but is not ashamed to ramble at times and do lots and lots of examples (often the same one
more than once). That said, it requires quite a bit of mathematical maturity and there are some quite
deep geometric asides throughout that one needs to recognise (and perhaps avoid).

[7] C Curtis and I Reiner: Representation theory of finite groups and associative algebras.
I absolutely love this old classic. Whilst it aims at people taking group representation theory (Lie
algebras don’t even get a mention), it’s still the best reference I know for an enormous amount of general
material about representations and modules.

[8] R Carter: Lie algebras of finite and affine type.
Another excellent math textbook. Detailed, but quite tough (and necessarily so). This would be one of
the best references I know.

[9] J-P Serre: Complex semisimple Lie algebras.
Beautifully written and concise, this is not really an introduction. However, it has good descriptions
of several important topics that are generally omitted in other sources. Very good for filling in certain
gaps.

[10] J Humphreys: Introduction to Lie algebras and representation theory.
This is probably the most comprehensive text on finite-dimensional Lie algebras. Can be terse in places,
but pretty much everything is there and the order has been carefully cultivated to make the progression
as linear as possible. Notation gets a bit pedantic at times. Highly recommended, but hard work.

[11] J Humphreys: Reflection groups and Coxeter groups.
Another carefully cultivated text, this time reflecting (haha) on the detailed theory of a class of groups
that include the Weyl groups that arise in semisimple Lie theory. Excellent, but challenging.

[12] V Varadarajan: Lie groups, Lie algebras and their representations.
Another comprehensive text, but even harder work than Humphreys. Good for a deeper understanding
of the core material but best left to a second course.

[13] R Moody and A Pianzola: Lie algebras with triangular decompositions.
Sometimes generality can bring clarity. This awesome text deals with a very general class of Lie
algebras, but I often find their presentation clearer than the more specialised texts. Hard work though.

[14] N Bourbaki: Lie groups and Lie algebras.
Speaking of hard work, this is the number one uncompromising approach to Lie theory in all its
generality. Three books in total, translated from the french originals, much of this was written by the
masters of the field. I regard it as a backup for when no other source has what I need! Not for the
faint-hearted.
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2. Lie groups and algebras

In this section, we shall introduce the notion of a Lie group, somewhat heuristically, and
illustrate it with plenty of natural examples. We study how any given Lie group gives rise
to a linearisation called a Lie algebra and use this to motivate the axioms of the latter. We
also explore relationships between Lie algebras, formalised in terms of homomorphisms,
and discuss the correspondence between Lie algebras over the real and complex number
fields.

2.1. Lie groups
Recall that a group is just a set equipped with two operations: multiplication and

inversion. The multiplication is associative, (ab)c = a(bc), and inversion requires an
identity 1, satisfying a1 = 1a = a, so that aa−1 = a−1a = 1. Of course, every element is
invertible.

A Lie group is a group that also carries the structure of a smooth manifold so that its
operations are smooth. Rather than fuss over what this means (you should do this in a
differential topology/geometry course), we shall be vague and just note that it means that
it may be continuously (indeed smoothly) parametrised so that one can do calculus on it.
Our aim here is not to develop the theory of Lie groups rigorously; as we said before, this
is not really possible with our prerequisites. Instead, we aim to use Lie groups to motivate
the introduction of Lie algebras. However, we shall also take the opportunity to quickly
discuss some of the things that make Lie groups a bit more challenging (but fun).

Here are some first (very simple) examples:

Example 1.

(a) The group U(1) of complex numbers of modulus 1 is a Lie group (with complex
number multiplication and inversion as operations).

(b) The real line � is a Lie group (with addition and negation as operations).
(c) The integers � form a group (actually a subgroup of �), but a discrete one, so we

shall not regard it as a Lie group. N

As for vector spaces, and so manifolds, we need to specify the “ground field”. We
will primarily deal with real and complex Lie groups, meaning that the ground field is
� and �, respectively. This is partly because these are the most common fields used in
applications, but also partly because Lie theory over other fields, eg. finite fields, can have
quite a different flavour.

Note that even though U(1) is defined using complex numbers, it is a real Lie group
because it is parametrised by a single real parameter (the angle). Indeed, it is diffeomorphic
(ie. isomorphic as smooth manifolds) to the circle S1 which is a one-dimensional real
manifold. A complex Lie group must be even-dimensional (as a real manifold).
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The standard examples of Lie groups are matrix groups:

Example 2.

(a) The group of invertible n×nmatrices forms a Lie group, denoted by GL(n), called the
general linear Lie group. When necessary, we emphasise the ground field as follows:
GL(n;�), GL(n;�), etc. These groups have dimension n2 (over their ground field).

(b) The subgroup of GL(n) whose elements have determinant 1 forms a Lie group SL(n)
called the special linear Lie group. Its dimension is n2 − 1.

(c) The upper-triangular n × n matrices, ie. those with entries satisfying Aij = 0 for all
j < i, form a Lie group T(n) provided that we insist that the diagonal entries Aii are
non-zero. Its dimension is 1

2n(n+1). If we insist that the diagonal entries are actually
all 1, then we get instead a different Lie group T′(n) of dimension 1

2n(n − 1).
(d) The orthogonal n × n matrices, ie. the real matrices satisfying Aᵀ = A−1, form a real

Lie group O(n) called the orthogonal Lie group. The subgroup SO(n) of matrices
in O(n) of determinant 1 is likewise a Lie group called the special orthogonal Lie
group. The dimension of both O(n) and SO(n) is 1

2n(n − 1).
(e) The unitary n ×n matrices, ie. the complex matrices satisfyingA† = A−1, form a real

Lie group U(n) called the unitary Lie group. The subgroup SU(n) of matrices in U(n)
of determinant 1 is likewise a Lie group called the special unitary Lie group. The
dimension of U(n) is n2 and that of SU(n) is n2 − 1.

(f) Recall that orthogonal matrices A ∈ O(n) are characterised by the fact that they
preserve the standard inner product on �n: 〈Av,Aw〉 = 〈v,w〉. If we relax the
positive-definiteness requirement, ie. we equip �n with a non-degenerate symmetric
bilinear form, then it is customary to denote�n by�p,q, where p and q are the number
of positive and negative eigenvalues of the invertible symmetric matrix B representing
the bilinear form (〈v,w〉 = vᵀBw). The matrices preserving such a bilinear form
also form a Lie group denoted by O(p,q). We have p + q = n, O(p,q) ' O(q,p) and
O(n, 0) = O(n). These orthogonal groups have special counterparts as well, obtained
by restricting to the matrices of determinant 1 and denoted by SO(p,q).

(g) If we instead relax the inner product on �n to a non-degenerate skew-symmetric
bilinear form, ie. the representing matrix J is invertible and antisymmetric, then the
matrices preserving this form yield a Lie group Sp(n) called the symplectic Lie group.
Since J is antisymmetric and invertible, its eigenvalues are pure imaginary and pair up
as distinct complex conjugates. It follows that n must be even; we accordingly often
denote the symplectic Lie group by Sp(2n). The dimension of Sp(2n) is n(2n + 1).
We do not need special counterparts because it may be shown that matrices in Sp(2n)
already have determinant 1. N
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We remark that for O(p,q), SO(p,q) and Sp(2n), the matrices B and J may be chosen,
without loss of generality, to have the following block-diagonal forms:

(2.1) B =

(
1p 0pq
0qp −1q

)
, J =

(
0nn 1n

−1n 0nn

)
.

Here, 1k denotes the k × k identity matrix (and 0k` is the k × ` zero matrix).
Of course, there are variants of these Lie groups that are defined in terms of linear

transformations rather than matrices. For example, GL(V ) denotes the Lie group of
invertible linear transformations from the vector space V to itself. This generalisation is
particularly important when V is infinite-dimensional. However, we shall mostly restrict
ourselves to finite dimensions in what follows, in which case there is no real difference
between GL(V ) and the matrix group GL(dimV ).
We remark that the Lorentz group of special relativity is basically O(1, 3) (or SO(1, 3)

or even something called SO+(1, 3), depending on the author). In Minkowski spacetime
�1,3, the bilinear form (the metric) is represented by the matrix B = diag{1,−1,−1,−1}.

It is rather nice that matrices provide such a rich set of examples of Lie groups. However,
there are many other important examples that are not so easily described. In particular, the
orthogonal groups O(n) and SO(n) have “double covers”, called the pin and spin groups
Pin(n) and Spin(n), that are important in quantum physics. They may be constructed
using matrices, but are far more naturally constructed using Clifford algebras. Moreover,
there are finite-dimensional Lie groups that cannot be constructed from matrices at all. A
notable example is the “universal cover” of SL(2;�) that arises in physics in connection
with general relativity and/or string theory on 3-dimensional anti-de Sitter space.

Exercise 1. Explain why the Lie groups of Example 2 should have the dimensions indi-
cated. [Note that this is not asking you to learn manifold theory, define the dimension of
a manifold and then rigorously prove the dimension statements above. It is rather asking
you to come up with plausible reasons for the dimensions being as stated.] H

Some Lie groups can be (usefully) understood using algebraic or geometric tools. For
example, O(2) is the set of 2 × 2 real matrices that preserve lengths, ie. rotations and
reflections in�2. Since reflections have determinant −1, the rotations alone correspond to
SO(2). But, rotations in�2 are just specified by an angle soSO(2) should be diffeomorphic
to the circle S1. In particular, we have a (rather obvious) isomorphism SO(2) '−→ U(1) of
Lie groups given by

(2.2)

(
cosθ − sinθ
sinθ cosθ

)
7−→ eiθ .

This means that the map and its inverse are smooth group homomorphisms (ie. they
preserve the group operations).
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Similarly, SO(3) describes rotations in �3. However, it is not diffeomorphic to the unit
sphere S2 because its dimension is 3. It is actually diffeomorphic to the real projective
space �P3.

Example 3. Consider SU(2), the group of unitary 2 × 2 complex matrices of determinant
1. Parametrising such a matrix as A = ( z w

w ′ z ′ ), with z,w,w′, z′ ∈ �, the determinant
condition means that A−1 =

(
z ′ −w
−w ′ z

)
. Unitarity then gives z′ = z∗ andw′ = −w∗, so

SU(2) =

{(
z w

−w∗ z∗

)
: z,w ∈ � and |z |2 + |w |2 = 1

}
(2.3)

=

{(
a + b i c + d i
−c + d i a − b i

)
: a,b, c,d ∈ � and a2 + b2 + c2 + d2 = 1

}
.

It now follows easily that SU(2) is diffeomorphic to the 3-sphere S3. N

Exercise 2. Show that SL(2;�) can be similarly realised as the 3-sphere in �2,2, ie. find a
parametrisation in terms of four real numbers satisfying a2 + b2 − c2 − d2 = 1. H

Unfortunately, most other Lie groups cannot be identified with nice familiar manifolds.
Nevertheless, the description of their topology is a classical (and very beautiful) subject
in its own right. In this vein, we shall conclude by briefly discussing some of these
topological features, specifically connectedness and compactness.

Recall that a space, eg. a manifold, is said to be connected if it cannot be written as the
union of two closed subspaces. Because we are only considering matrix Lie groups, they
may be embedded into a suitably high-dimensional �n (or �n). We may therefore regard
being closed as meaning that the space contains its limit points with respect to the usual
metric on �n (or �n). Similarly, a subspace of �n (�n) is said to be compact if it is closed
and bounded, where we may take bounded to mean that there is an absolute upper- and
lower-bound on the possible entries of the matrix.

Example 4. It should be clear from their realisations as spheres that U(1) and SU(2) are
compact and connected. N

Example 5. It is easy to see that O(n) is not connected: det : O(n) → {±1} is a polynomial
in the entries of the orthogonal matrix, hence continuous, so it must actually be constant
on each connected component. O(n) therefore has at least two connected components. It
is not quite so easy to see that SO(n) is connected (but it is). N

Example 6. The function A 7→ A†A is polynomial in the (real and imaginary parts of the)
entries of A, hence continuous. Because the inverse image under a continuous function of
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a closed set is closed, we see that U(n) is the inverse image of the closed set consisting of
the identity matrix 1, hence it is closed. U(n) is moreover bounded because

A†A = 1 ⇒

n∑
j=1
(A†)ijAji = 1 ⇒

n∑
j=1

��Aij

��2 = 1, for all i,(2.4)

⇒ |Aij | 6 1, for all i and j.

It follows that U(n) is compact. N

Exercise 3. Show that SL(2;�) is not compact. Use this to conclude that GL(2;�) is
neither closed nor bounded. H

Compact Lie groups are actually significantly easier to analyse than non-compact ones.
Unfortunately, their beautiful theory will have to be left for the future. For now we turn to
the main mathematical concept of this subject: Lie algebras.

2.2. Lie algebras

Let us say that an algebra is a vector space equipped with a bilinear multiplication that
distributes over the vector space addition. If the multiplication is associative, then we have
an associative algebra. If it has a multiplicative identity, then the algebra is unital. Finally,
if the multiplication is commutative, then we have a commutative or abelian algebra. For
example, � is a commutative associative algebra, as is �. The set of n × n matrices is a
non-commutative associative algebra. Each of these examples is unital.

Contrarily, a Lie algebra is a (generally) non-unital algebra g with a (generally) non-
associative non-abelian multiplication [·, ·] called the Lie bracket that satisfies

Antisymmetry: [x ,y] = −[y,x], for all x ,y ∈ g;
The Jacobi identity: [[x ,y], z] + [[y, z],x] + [[z,x],y] = 0, for all x ,y, z ∈ g.

We write the (bilinear) multiplication as [·, ·] in order to prevent the temptation to use
associativity. As usual, there is an underlying ground field that we shall generally take to
be either � or �, for simplicity.

Now, antisymmetry is a rather mild generalisation of commutativity, but the Jacobi
identity is something of a strange replacement for associativity. Where does it come
from? The answer lies in the relationship between Lie groups and algebras. Recall that
we required a Lie group to be a smooth manifold so that we could do calculus on it. The
Lie algebra of a Lie group G is, roughly speaking, what you obtain by differentiating at
the group’s identity 1.

More precisely, differentiating a smooth curve through 1 ∈ G and evaluating at 1 gives
a vector that is tangent to the curve at 1. The set of such vectors then forms a vector space
of the same dimension as the Lie group that is tangent to the Lie group at 1. This is called
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the tangent space T1G of the Lie group at 1. One can make this idea precise with the
tools of differential geometry, but here we shall have to rely on somewhat more heuristic
methods. Specifically, an element x ∈ T1G should generate a smooth curve γ in G with
(local) parametrisation

(2.5) γx (ε) = 1 + εx +O(ε2).

Differentiating with respect to ε and then setting ε to 0 recovers x from γx (ε).
Group inversion therefore sends γx (ε) to γx (ε)−1 = 1 − εx + O(ε2), ie. differentiating

results in x 7→ −x . Similarly, group multiplication corresponds to (x ,y) 7→ x +y. Neither
of these is particularly exciting for the vector space T1G. In particular, they do not give
us an algebra structure. Moreover, they do not even capture the non-abelian nature of
most Lie groups. To correct this, we will instead look at the O(ε2)-terms in the group
commutator (д,h) 7→ дhд−1h−1.

Exercise 4. Show that writing

(2.6) γx (ε) = 1 + εx + ε2x′ +O(ε3) and γx (ε)
−1 = 1 − εx + ε2x′′ +O(ε3)

leads to the non-linear relation x′ + x′′ = x2. Use this to show that

H(2.7) γx (ε)γy(ε)γx (ε)
−1γy(ε)

−1 = 1 + ε2(xy − yx) +O(ε3).

Exercise 5. Show that ifx andy belong to an arbitrary associative algebraA, then replacing
the product structure by the commutator

(2.8) [x ,y] = xy − yx

makes A into a Lie algebra. ie. show that the commutator is bilinear and satisfies both
antisymmetry and the Jacobi identity. H

The idea then is that T1G should inherit an algebraic structure that satisfies the same
axioms as the commutator does. Wedo not claim that this structuremust be the commutator
as T1G does not need to have the structure of an associative algebra in general — this
proviso is actually a symptom of our heuristic approach to tangent spaces and is removed
in the fully rigorous differential-geometric treatment. Nevertheless, it is straightforward
to verify that T1GL(n) does inherit the matrix commutator as its Lie bracket. This will
also be the case for Lie subgroups of GL(n). In any case, this is one way to motivate the
axioms of a Lie algebra.

Enough of heuristics: let’s look at some examples.

Example 7. An abelian Lie algebra gmust satisfy [x ,y] = [y,x], for all x ,y ∈ g. However,
antisymmetry requires that [y,x] = −[x ,y]. Combining these, we conclude that an abelian
Lie algebra has Lie bracket [x ,y] = 0, for all x ,y ∈ g. N
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Example 8. If g is a one-dimensional Lie algebra, with basis {x} say, then the Lie bracket
is completely determined by [x ,x]. However, antisymmetry again forces this to be 0, so a
one-dimensional Lie algebra is necessarily abelian. N

Example 9. There is a unique non-abelian Lie algebra g with dim g = 2. Let {x ,y} be
a basis of g. Since [x ,x] = [y,y] = 0 and [x ,y] = −[y,x], the Lie bracket is completely
determined by [x ,y]. We write

(2.9) [x ,y] = ax + by, for some scalars a,b with ab , 0.

Without loss of generality, we may assume that a , 0. Then, we may choose a new basis
{x′ = ax + by,y′ = y/a} with respect to which the Lie bracket takes the form

(2.10) [x′,y′] = [ax + by,y/a] = [ax ,y/a] + [by,y] = [x ,y] = ax + by = x′.

One can (and should) check that this Lie bracket indeed satisfies the Jacobi identity. N

Example 10. The Heisenberg uncertainty relation of quantum mechanics is encapsulated
by the complex 3-dimensional Lie algebra spanned by x , p and 1, with parameter ~ ∈ �
(called Planck’s constant) and Lie bracket specified by

(2.11) [x ,p] = i~1 and [x , 1] = [p, 1] = 0.

This Lie algebra is often called the Heisenberg algebra; however, this term is also some-
times used for more general algebras. We remark that the dependence of the Heisenberg
algebra on the parameter ~ is quite superficial. As long as ~ , 0, we may rescale it to 1 by
rescaling the basis element x by a factor of ~−1. The Heisenberg algebra with ~ = 0 is of
course different to those with ~ , 0 because the former is abelian. N

The notion of uniqueness of a non-abelian two-dimensional Lie algebra, or of the
Heisenberg algebra with ~ , 0, presupposes that we know what it means for two Lie
algebras to be the same, ie. isomorphic. We shall discuss this shortly. Whatever it means,
however, it should be clear that the isomorphism class cannot change just because we are
representing the Lie bracket in a different basis!

We continue looking at examples, in particular we describe some that arise as tangent
spaces to Lie groups.

Example 11. The Lie group U(1) is realised by the elements z ∈ � that satisfy z∗z = 1.
Differentiating this defining relation at 1 corresponds (heuristically) to expanding z ∈ U(1)
as

(2.12) z = 1 + εx +O(ε2)



MAST90132: LIE ALGEBRAS 13

and determining the first-order (in ε) relation that results. This gives

(2.13)
(
1 + εx +O(ε)2

)∗ (
1 + εx +O(ε)2

)
= 1 ⇒ ε(x∗ + x) +O(ε2) = 0,

ie. x∗ + x = 0. This forces x to be pure imaginary, so we conclude that the tangent space
at 1 to U(1) may be identified with the pure-imaginary complex numbers. The latter may
of course be identified with �. As it is one-dimensional, the Lie bracket is always zero.
This abelian Lie algebra is denoted by u(1). N

It is a very common convention to use capital letters to denote Lie groups and lowercase
gothic/fraktur to denote the corresponding Lie algebras. We shall follow it here when not
inconvenient.

Example 12. The real Lie group SU(2) consists of the complex 2×2matricesA satisfying
A†A = 1 and detA = 1. Expanding A ∈ SU(2) as 1 + εx + O(ε2), we find that the first
defining relation becomes x† + x = 0, whence we conclude that x must be antihermitian.
For the second defining relation, note that to first-order in ε, we have

(2.14) 1 + εx ∼ eεx .

The corresponding relation is therefore trx = 0 because

(2.15) 1 ∼ det(1 + εx) ∼ det eεx = eε trx ∼ 1 + ε trx .

The vector space of the Lie algebra su(2) of SU(2) is therefore identified with the real
vector space of 2 × 2 complex antihermitian traceless matrices. As SU(2) is a matrix Lie
group, the Lie bracket on su(2) is the matrix commutator. N

Exercise 6. Explain why su(2), as defined in terms of complex antihermitian traceless
matrices, is a real Lie algebra and not a complex one. H

We should mention that the Lie group SU(2) is usually described in physics texts in
terms of its “generators” or “infinitesimal generators”. The infinitesimal qualifier should
tip us off to the fact that they are here referring to something that should live in the Lie
algebra su(2). However, the physicists’ favourite basis for these generators is given by the
celebrated Pauli matrices

(2.16) σ1 = σx =

(
0 1
1 0

)
, σ2 = σy =

(
0 −i
i 0

)
, σ3 = σz =

(
1 0
0 −1

)
,

which are all quite obviously hermitian. Indeed, to get a bona fide basis of su(2), one may
multiply each of the Pauli matrices by i (or −i). However, all of this is largely academic
because physics texts will always implicitly work with a complex version (sl(2;�) actually
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— see Example 18) in which multiplying by i is allowed. Unfortunately, it is surprisingly
common to read in such texts that the generators belong to su(2) or, worse yet, SU(2).

But that shouldn’t stop you from being correct! To help you, here’s a rather long list of
Lie algebras to get familiar with. Oh joy!

Exercise 7. Find the defining relations of the Lie algebras gl(n), sl(n), t(n), t′(n), o(n),
u(n), su(n), o(p,q) and sp(2n) that correspond to the Lie groups of Example 2. In each
case, the Lie bracket is just the matrix commutator and you should check, when necessary,
that the Lie algebras you have derived are actually closed under this Lie bracket. Show
also that o(n) = so(n) and o(p,q) = so(p,q). H

You might also want to check that the dimension of each of your Lie algebras matches that
of the corresponding Lie group. This must be the case because of the realisation of the
former as the tangent space to the latter at 1.
Of course, there do exist (interesting) Lie algebras for which the Lie bracket is not given

by a commutator.

Exercise 8.

(a) Show that equipping �3 with the cross product, [v,w] = v × w , results in a Lie
algebra.

(b) Rescale each of the Pauli matrices (2.16) by a complex number so that they are:
• Actually elements of su(2);
• Have Lie brackets that match those of (�3,×) in the standard basis {i, j,k}.

Use this to conclude that (�3,×) and su(2) are isomorphic as Lie algebras. [If you must,
look at the next section to see the definition of an isomorphism of Lie algebras.] H

Wefinishwith a (very!) brief exploration of how certain Lie groups can be reconstructed
from their Lie algebras.

Exercise 9. Recall the three non-isomorphic 3-dimensional real Lie groups SO(3), SU(2)
and SL(2;�) and their Lie algebras so(3) ' su(2) and sl(2;�). We consider, for each of
these three Lie groups and algebras, the (always-convergent) matrix exponential

(2.17) X 7→ eX =
∞∑
j=0

X j

j!
.

(a) Show that the matrix exponential maps each of the three Lie algebras above into the
corresponding Lie group.

(b) Prove that the matrix exponential is not injective by finding a non-zero matrix X in
each of the three Lie algebras which is mapped to the identity matrix in the Lie group.
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(c) Argue that for X , 0 sufficiently small (use whichever norm floats your boat) in each
of the three Lie algebras, eX is not the identity. (The matrix exponential is therefore
locally injective.)

(d) For SO(3) and SU(2), one can show that their compactness implies that their matrix
exponential maps are surjective. Show that the matrix exponential for SL(2;�) is not
surjective by:
• Proving that X ∈ sl(2;�) implies that tr eX > −2.
• Using this to exhibit an element of SL(2;�) that is not in the image of the matrix
exponential. H

2.3. Lie algebra morphisms, subalgebras and ideals

As promised, we shall now discuss when two Lie algebras may be regarded as “the
same”. Abstract algebra has all the answers, as usual, but there are (completely standard)
definitions to absorb.

A homomorphism ϕ : g → h of Lie algebras is a linear map that sends the Lie bracket
of g to that of h:

(2.18) ϕ([x ,y]g) = [ϕ(x),ϕ(y)]h.

If g = h in this definition, then the homomorphism ϕ is said to be an endomorphism of Lie
algebras.

As usual, the homomorphism ϕ in (2.18) is said to be injective if its kernel

(2.19) kerϕ = {x ∈ g : ϕ(x) = 0}

is 0 and it is said to be surjective if its image

(2.20) imϕ = {y ∈ h : y = ϕ(x) for some x ∈ g}

is h. A homomorphism that is bijective, meaning both injective and surjective, is an
isomorphism. An endomorphism that is also an isomorphism is called an automorphism.

Exercise 10. Show that the non-abelian (ie. ~ , 0) Heisenberg algebra of Example 10 is
isomorphic to t′(3;�). H

Exercise 11. Construct an isomorphism between su(2) and so(3). Show that sl(2;�) is
not isomorphic to either. [Note that because these are real Lie algebras, any isomorphism
must be real: with respect to any choice of bases, the representing matrix must have real
entries.] H

An important remark is that the isomorphism su(2) ' so(3) does not imply that the Lie
groups SU(2) and SO(3) are isomorphic. In fact, they are not. One easy way to see this is
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to show that their centres have different sizes. Recall that the centre Z(G) of a Lie group
G is just the set of elements that commute with all other elements:

(2.21) Z(G) = {д ∈ G : дh = hд for all h ∈ G}.

Exercise 12.

(a) Show that
��Z(SU(2))

�� = 2 by explicitly parametrising an arbitrary matrix of SU(2),
as in Example 3, and checking if the result commutes with

( 0 1
−1 0

)
and

( 0 i
i 0

)
, both of

which are in SU(2).
(b) Show that

��Z(SO(3))
�� = 1 by checking which matrices commute with a diagonal

matrix in SO(3) and then checking which also commute with
( 0 −1 0

1 0 0
0 0 1

)
and

( 1 0 0
0 0 −1
0 1 0

)
,

both of which are in SO(3). H

A Lie subalgebra h of a Lie algebra g is a vector subspace that is closed under the Lie
bracket:

(2.22) x ,y ∈ h ⇒ [x ,y] ∈ h.

A Lie subalgebra is therefore a Lie algebra in its own right. We often write the condition
to be a Lie subalgebra as [h, h] ⊆ h. A stronger concept is for h to be an ideal of g, which
requires that [g, h] ⊆ h, ie.

(2.23) x ∈ g and y ∈ h ⇒ [x ,y] ∈ h.

Note that 0 and g are always ideals of g.

Example 13. t(2) is a subalgebra of gl(2), but is not an ideal because

N(2.24)

[(
0 0
1 0

)
,

(
1 0
0 0

)]
=

(
0 0
1 0

)
< t(2).

Example 14. sl(n) is an ideal of gl(n) because the trace of a commutator is always zero. N

Exercise 13. Show that if h is a subalgebra of g, then the inclusion map ι : h → g is an
injective homomorphism of Lie algebras. H

Exercise 14. Show that the kernel kerϕ of a Lie algebra homomorphism ϕ : g → h is an
ideal of g and that the image imϕ of ϕ is a Lie subalgebra of h. Give an example to show
that imϕ need not be an ideal. H

Exercise 15. Show that the centre z(g) of a Lie algebra g, defined by

(2.25) z(g) = {x ∈ g : [x , g] = 0}

is an abelian ideal of g. H
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Ideals are distinguished from subalgebras because they can be used to form quotient
Lie algebras. Roughly speaking, the quotient of g by an ideal h ⊆ g is the Lie algebra g/h
that is obtained by identifying h with zero. In this picture, we need to quotient by an ideal
because the Lie bracket of everything with 0 must give 0. More formally, the elements of
g/h are the equivalence classes x , for x ∈ g, defined by

(2.26) x = {y ∈ g : y − x ∈ h},

the vector space structure is given by

(2.27) ax + by = ax + by, for all scalars a,b and x ,y ∈ g,

and the Lie bracket is given by

(2.28) [x ,y]g/h = [x ,y]g, for all x ,y ∈ g.

Choosing different representatives x′ and y′ for x and y, respectively, we immediately see
that x′ − x and y′ − y belong to h. The difference in the right-hand side of the Lie bracket
(2.28) is therefore

(2.29) [x′,y′]g − [x ,y]g = [x′ − x ,y′ − y]g + [x′ − x ,y]g + [x ,y′ − y]g = 0,

since all three brackets on the right-hand side belong to h, by the ideal property. The Lie
bracket of g/h is therefore well-defined when h is an ideal of g.

Exercise 16. Show that if h is an ideal of g, then the canonical quotient map π : g→ g/h,
given by x 7→ x , is a surjective homomorphism of Lie algebras. H

Exercise 17. Show that if ϕ : g→ h is a homomorphism of Lie algebras, then

(2.30)
g

kerϕ
' imϕ,

as Lie algebras (cf. Exercise 14). H

So ideals are somehow better than Lie subalgebras. It is therefore satisfying that the
set of ideals of a given Lie algebra is also closed under the operations of intersection and
sum. Given ideals h1 and h2 of g, define

(2.31)
h1 ∩ h2 = {x ∈ g : x ∈ h1 and x ∈ h2}

and h1 + h2 = {x1 + x2 ∈ g : x1 ∈ h1 and x2 ∈ h2}.

Exercise 18.

(a) Show that both h1 ∩ h2 and h1 + h2 are ideals of g when h1 and h2 are.
(b) Give examples, with g = sl(2;�), of Lie subalgebras h1 and h2 whose sum h1 + h2 is

not a Lie subalgebra of g. H
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A very important special case is when one has two ideals h1 and h2 of g with h1∩h2 = 0.
Then, we say that h1 + h2 is the direct sum of h1 and h2. You know that the direct sum is
important because we use a special notation to distinguish it from the ordinary sum: we
write h1 ⊕ h2 instead of h1 + h2.

Exercise 19. Show that gl(n) is the direct sum of two ideals, one isomorphic to sl(n) and
the other to u(1), if the ground field is �, or gl(1;�), if the ground field is �. H

Exercise 20. Show that if g = h1 ⊕ h2, then g/h1 ' h2. H

We now come to some of the most important definitions in Lie algebra theory. A Lie
algebra is said to be simple if it is non-abelian and has no ideals except for 0 and itself.
(It is traditional to regard the abelian Lie algebras u(1) and gl(1;�) as not simple, even
though they have only two ideals, in order to simplify the statements of many results.) A
Lie algebra is said to be semisimple if it may be written as a direct sum of its simple ideals,
each of which is therefore a simple Lie algebra in its own right. Finally, a Lie algebra is
said to be reductive if it may be written as a direct sum of its centre and its simple ideals.

At this point, it is convenient to quote a standard technical result (a special case of the
Krull-Schmidt Theorem of abstract algebra) that guarantees the essential uniqueness of
the decomposition of a reductive Lie algebra into its centre and simple ideals — the only
ambiguity is in the ordering of the ideals. As semisimple Lie algebras are special cases of
reductive ones, this uniqueness applies to them too.

Proposition 2.1 (Krull-Schmidt). If g is a reductive Lie algebra with two decompositions
involving its centre and its simple ideals, eg.

(2.32) g ' z(g) ⊕ h1 ⊕ · · · ⊕ hm and g ' z(g) ⊕ l1 ⊕ · · · ⊕ ln,

thenm = n and there is a permutationσ of {1, . . . ,n} such that hi ' lσ (i) for all i = 1, . . . ,n.

Proof. Set gm = g/z(g). By Exercise 20, the two decompositions give

(2.33) gm ' h1 ⊕ · · · ⊕ hm ' l1 ⊕ · · · ⊕ ln .

Let pm : gm → hm and qj : gm → lj , j = 1, . . . ,n, denote the projections onto the indicated
simple ideals. Then,

∑n
j=1 qj = 1gm .

We consider the restrictions

(2.34) πj = pm |lj ◦ qj
��
hm

: hm −→ hm .

Because ker πj is an ideal of the simple Lie algebra hm (Exercise 14), it is either hm or
0. In the former case, πj is 0 and in the latter, it is an isomorphism (since dim hm < ∞).
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However,

(2.35)
n∑
j=1

πj = pm ◦
n∑
j=1

qj
��
hm
= pm ◦ 1hm = 1hm ,

so there must be at least one πj , j = 1, . . . ,n, which is an isomorphism. Pick such a j and
call it σ (m).

Now, the kernel of the restriction of qσ (m) to hm is an ideal, hence it is 0 or hm. But,
the latter contradicts πσ (m) , 0, hence it is zero and so qσ (m) : hm → lσ (m) is injective. It
follows that dim hm 6 dim lσ (m). If this inequality were strict, then the restriction of pm
to lσ (m) would necessarily have a non-zero kernel, hence this kernel would be lσ (m), again
contradicting πσ (m) , 0. We conclude that dim hm = dim lσ (m), proving that hm ' lσ (m).

We can repeat this argument with gm−1 = gm/hm, noting that its decomposition into the lj
will now omit lσ (m). In this way, we discover that hm−1 ' lσ (m−1), for some σ (m−1) , σ (m)
in {1, . . . ,n}. Continuing, we find that every hi is isomorphic to some lσ (i) and that the
σ so constructed in a permutation of {1, . . . ,m}. This proves that m 6 n. However, if
m < n, then quotienting away all of the hi would lead to the direct sum of the remaining
lj being isomorphic to 0, a contradiction. We therefore conclude thatm = n and the proof
is complete. �

Example 15. By Exercise 19, the Lie algebra gl(n) is not simple, because it has non-zero
proper ideals, and is not semisimple, because the ideal isomorphic to u(1) or gl(1;�)
obviously cannot be written as a direct sum of simple ideals. We shall see in Example 17
below that sl(2) is simple, from which it follows that gl(2) is reductive. In fact, gl(n) is
reductive for all n ∈ �>0 (see Exercise 53). N

Example 16. The real Lie algebra t(2) is not simple nor semisimple because the identity
matrix spans an abelian ideal isomorphic to u(1). Because the trace of a commutator is
zero, the traceless matrices of t(2) form an ideal h. We therefore have t(2) ' u(1) ⊕ h. It
is easy to check that h is non-abelian and that e =

( 0 1
0 0

)
spans an ideal isomorphic to u(1)

in h. However, this ideal has no complement in h: if it did, then h would be isomorphic
to u(1) ⊕ u(1), contradicting the fact that h is non-abelian. Thus, h cannot be written as a
direct sum of ideals, hence it is not reductive and so neither is t(2). N

If fact, t(n) is never reductive (for n > 1) because it has the nasty property that it
possesses an ideal h with no complement: there exists an ideal h ⊂ t(n), but t(n) ; h ⊕ l
for any ideal l ⊂ t(n). This bad behaviour means that one is forced to resort to quotients to
analyse the structure of t(n), ie. instead of splitting off h as a direct summand, we have to
consider t(n)/h. Semisimplicity (and reductivity) avoids this bad behaviour completely!
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Exercise 21. Define the derived subalgebra of a Lie algebra g to be

(2.36) [g, g] = span{[x ,y] : x ,y ∈ g}.

Show that [g, g] is an ideal of g. Deduce that if g is simple, then [g, g] = g. Conclude that
the same is true for semisimple Lie algebras, but that it is false for reductive Lie algebras
in general. H

Example 17. We claim that sl(2) is simple. To see this, assume the opposite, ie. that sl(2)
has a non-zero proper ideal h. Its dimension is necessarily 1 or 2.

If dim h = 1, then h is spanned by a single matrix. One can use the Lie bracket to
explicitly show that this is inconsistent with the property of being an ideal, but this is dull.
Here is a slightly more refined argument. Consider an element h ∈ sl(2) and a linear map
ad(h) : sl(2) → sl(2) defined by

(2.37) h =

(
1 0
0 −1

)
and ad(h)x = [h,x], for x ∈ sl(2).

For h to be an ideal, any spanning element must be an eigenvector of ad(h). It is easy to
check that this reduces the possible spanning elements to (non-zero multiples of) h,

(2.38) e =

(
0 1
0 0

)
and f =

(
0 0
1 0

)
.

However, h does not span an ideal, because eg. [h, e] = 2e, and neither do e or f , because
[e, f ] = h. This contradiction therefore rules out a one-dimensional ideal of sl(2).
If dim h = 2, one can again arrive at an inconsistency using direct but very tedious

arguments. However, we shall proceed by using the quotient map π : sl(2) → sl(2)/h,
which is a surjective Lie algebra homomorphism by Exercise 16. Now note that

π
(
[sl(2), sl(2)]

)
=

[
π (sl(2)),π (sl(2))

]
= [sl(2)/h, sl(2)/h] = 0(2.39)

⇒ [sl(2), sl(2)] ⊆ h,

since sl(2)/h is one-dimensional, hence abelian. However, the easily checked Lie brackets
[h, e] = 2e, [h, f ] = −2f and [e, f ] = h show that the derived subalgebra of sl(2) is actually
sl(2), since {e,h, f } is a spanning set. This contradiction completes the proof. N

Exercise 22. Use the isomorphism of Exercise 8 to argue geometrically that su(2) has no
2-dimensional Lie subalgebra, let alone a 2-dimensional ideal. H

2.4. Complexifications

From here on, unless explicitly noted to the contrary, we shall be exclusively concerned
with complex Lie algebras. The reason for this is that their study relies heavily on linear
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algebra and � is a much better field for this than� (eg. eigenvalues always exist). In many
applications, in particular those involving quantum mechanics, the natural underlying
ground field is anyway �.

If we are given a real Lie algebra g, there is a canonical way to turn it into a complex Lie
algebra, called the complexification of g, that we shall denote by g�. At the formal level,
this can be summarised by the following definition: g� = � ⊗� g. Here, the subscript
on the tensor product indicates that only real scalars may pass from the first factor to the
second:

(2.40) r ⊗� x = 1 ⊗� (rx), for all r ∈ � and x ∈ g.

Complex scalars such as i cannot pass through. This captures the fact that multiplying i
and x doesn’t make sense when x belongs to a real Lie algebra. The product of i and x

(which only makes sense in g�) is instead represented by the formal tensor product i ⊗� x .
Of course, one generally drops these formal tensor product symbols once one has become
comfortable with this approach to the complexification.

Admittedly, this is all a bit abstract, so it may be helpful to note that, at the level of bases,
complexification just amounts to allowing linear combinations with complex coefficients
instead of only real ones. Obviously, the complexification of a complex Lie algebra is just
the original complex Lie algebra again.

One nice feature of complexification is that it amalgamates many of the real Lie algebras
that we’ve already met.

Example 18. It should be clear that the complexification of sl(2;�) is sl(2;�)� = sl(2;�).
We therefore ask instead for the complexification of su(2).

Recall that su(2) consists of the traceless antihermitian complex 2×2 matrices. A basis
is therefore given by

(2.41)

{(
0 i
i 0

)
,

(
0 1
−1 0

)
,

(
i 0
0 −i

)}
.

In the complexification su(2)�, we are allowed to multiply these basis elements by −i, 1
and −i, respectively, giving a new basis of su(2)�:

(2.42)

{(
0 1
1 0

)
,

(
0 1
−1 0

)
,

(
1 0
0 −1

)}
.

Taking half the sum and the difference of the first two matrices, we arrive at yet another
basis:

(2.43)

{(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 0
0 −1

)}
.
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This we recognise as the basis {e, f ,h} of sl(2;�) that we used in Example 17. As both
su(2)� and sl(2;�) have the matrix commutator for their Lie bracket, it follows that these
complex Lie algebras are isomorphic.

We conclude that even though su(2) and sl(2;�) are non-isomorphic real Lie algebras
(Exercise 11), their complexifications are isomorphic: su(2)� ' sl(2;�)� ' sl(2;�). N

Note that if we have a real Lie algebra g and a complex Lie algebra h such that h is
(isomorphic to) the complexification g� of g, then g is said to be a real form of h. From
the previous example, we see that su(2) and sl(2;�) are non-isomorphic real forms of
sl(2;�).

Example 19. Here are some further complexifications:

(a) gl(n;�)� ' u(n)� ' gl(n;�).
(b) sl(n;�)� ' su(n)� ' sl(n;�).
(c) t(n;�)� ' t(n;�) and t′(n;�)� ' t′(n;�).
(d) o(p,q)� = so(p,q)� ' so(p + q;�) = {A ∈ gl(p + q;�) : Aᵀ = −A and trA = 0}.
(e) sp(2n)� ' sp(2n;�) = {A ∈ gl(2n;�) : Aᵀ J = −JA}.

We refer to (2.1) for the definition of J . N

Exercise 23. Explain why the complexifications of o(p,q) and so(p,q) only depend on the
sum of p and q. H

From now on, if we neglect to specify the field in the notation being used for a Lie
algebra, then the field is understood to be �. In particular, gl(n), sl(n), so(n) and sp(2n)
will hereafter refer to gl(n;�), sl(n;�), so(n;�) and sp(2n;�), respectively.
Now, of the Lie algebras of most interest to us, the (finite-dimensional) simple complex

ones, we have now met all of them bar five. These five are called exceptional and they are
denoted as in the following table of all simple complex Lie algebras.

g sl(n), n > 2 so(n),n = 3 or n > 5 sp(2n),n > 1 g2 f4 e6 e7 e8

dim g n2 − 1 1
2n(n − 1) n(2n + 1) 14 52 78 133 248

Moreover, the only coincidences among the simple complex Lie algebras are

(2.44) sl(2) ' so(3) ' sp(2), sl(4) ' so(6) and so(5) ' sp(4).

We remark that sl(1) and so(1) are both 0, so(2) ' gl(1) is abelian (and one-dimensional)
and so(4) ' sl(2) ⊕ sl(2) is the only one that is semisimple but not simple.

We conclude with an exercise that hints at a direction that one can take to classify certain
types of real Lie algebras, eg. semisimple ones, assuming that the corresponding complex
ones have already been classified.
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Exercise 24. An adjoint † on a complex Lie algebra g is a conjugate-linear map, ie.

(2.45) (ax + by)† = a∗x† + b∗y†, for all a,b ∈ � and x ,y ∈ g,

from g to itself that satisfies

(2.46) (x†)† = x and [x ,y]† = [y†,x†], for all x ,y ∈ g.

(a) Show that e† = f and h† = h defines an adjoint on sl(2;�). (This adjoint is suggested
by the defining representation — see (2.51) below.)

(b) Show that if † is an adjoint on g, then the set

(2.47) g� = {x ∈ g : x† = −x}

of antihermitian elements of g forms a real Lie algebra. It’s called a real form of g.
(c) Show that the real form of sl(2;�) defined by the adjoint in a is isomorphic to su(2).
(d) Show that e† = −e, h† = −h and f † = −f defines another adjoint on sl(2;�) and

determine the (isomorphism class of the) corresponding real form. H

2.5. Representations and modules
A representation of a Lie algebra g is, roughly speaking, a way to assign to each element

in g a matrix (or a linear transformation) so that the Lie bracket of g becomes the matrix
commutator. More formally, a representation of g on a vector space V is a Lie algebra
homomorphism π : g→ gl(V ). Recall that this means that π is a linear map satisfying

(2.48) π ([x ,y]g) = [π (x),π (y)]gl(V ) = π (x)π (y) − π (y)π (x), for all x ,y ∈ g.

The dimension of the representationπ is the dimension ofV . Generally, the field underlying
V will match the field underlying g. In our case, this means that we shall assume thatV is
complex unless otherwise noted.

Example 20. A representation π : g→ gl(V ) is said to be trivial if π (x) = 0 for all x ∈ g.
In other words, if π = 0 (which is obviously a Lie algebra homomorphism for any choice
of V ). N

Exercise 25. Use Exercise 21 to prove that a one-dimensional representation of a semisim-
ple Lie algebra is always trivial. Give an example of a non-trivial one-dimensional repre-
sentation of a non-simple Lie algebra. H

Example 21. The adjoint representation of g is, cf. (2.37), the Lie algebra homomorphism
ad: g→ gl(g) defined by

N(2.49) ad(x)y = [x ,y], for all x ,y ∈ g.

Exercise 26. Show that ad is actually a homomorphism of Lie algebras. H
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Each of the Lie algebras gl(n), sl(n), so(n) and sp(2n) has a defining representation, this
being the homomorphism that maps each element of the abstract Lie algebra to the matrix
that we used in Section 2.2 to define it.

Example 22. sl(2) may be defined as the complex Lie algebra spanned by the abstract
elements e, h and f with Lie bracket determined by

(2.50) [h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

The defining representation of sl(2) is then the linear map π : sl(2) → gl(2) defined by

(2.51) π (e) =

(
0 1
0 0

)
, π (h) =

(
1 0
0 −1

)
and π (f ) =

(
0 0
1 0

)
.

Note that this representation of sl(2) is two-dimensional while the adjoint representation
of sl(2) has dimension 3. The defining representation of sl(2) is often also referred to as
the fundamental representation (for reasons that we’ll get to later). N

Exercise 27. Determine π (e) so that, along with

(2.52) π (h) =

©­­­­­«
3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

ª®®®®®¬
and π (f ) =

©­­­­­«
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

ª®®®®®¬
,

π defines a four-dimensional representation of sl(2). H

It is common for mathematicians (and good physicists) to prefer to emphasise the
vector space V that g acts on rather than the homomorphism π . Then, we speak not of a
representation, but of a module. Formally, a module of a Lie algebra g (a g-module for
short) is a vector space V equipped with an action of g that is linear and respects the Lie
bracket. Here, an action of g on V means a map from g × V to V denoted by x · v, with
x ∈ g and v ∈ V , or (rather more lazily) just by xv. Linearity means that

(2.53)
(ax + by)v = a(xv) + b(yv),

x(av + bw) = a(xv) + b(xw),
for all a,b ∈ �, x ,y ∈ g and v,w ∈ V ,

and respecting the Lie bracket means that

(2.54) [x ,y]v = x(yv) − y(xv), for all x ,y ∈ g and v ∈ V .

Usually, of course, we would drop the parentheses in these expressions.

Hopefully, it is clear that representations and modules are just two ways of describing
the same concept. Simply put, a representation π : g→ gl(V ) defines a g-module structure
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on V via

(2.55) xv = π (x)v, for all x ∈ g and v ∈ V ,

and a g-module V defines a representation π by the same formula. The “module side” is
just a little shorter to write, which probably explains its popularity.

Just as ideals are the important sub-structure for Lie algebras, it is important to consider
the analogous sub-structure for modules. A submodule of a g-module V is a vector
subspaceW ⊆ V that is preserved by the action of g:

(2.56) w ∈W ⇒ xw ∈W for all x ∈ g.

Physicists often refer to submodules as “invariant subspaces” or subrepresentations. Note
that submodules generalise ideals in the sense thatW is a submodule of the adjoint module
of g, ie. the module g corresponding to the adjoint representation, if and only ifW is an
ideal of g. There is no useful analogue of Lie subalgebras for modules.

Exercise 28. Show that ifV andW are submodules of some g-module, then so areV ∩W
and V +W . H

The analogy with ideals is manifest in the notion of a quotient module. If W is a
submodule of a g-module V , then the vector space quotient V /W is naturally a g-module
with the action

(2.57) xv = xv, for all x ∈ g and v ∈ V /W .

We recall that the equivalence class v ∈ V /W is defined by v = {v′ ∈ V : v − v′ ∈ W }.
Thus, v = v′ if v − v′ ∈ W . The action on V /W given above is therefore well-defined:
v = v′ implies that v − v′ ∈W , hence xv − xv′ = x(v − v′) ∈W (asW is a submodule),
so xv = xv′.

A g-module V is said to be irreducible if its only submodules are 0 and V itself. A
module that is not irreducible is, of course, reducible. Irreducibility is the analogue
of simplicity for Lie algebras. (Indeed, many mathematicians use “simple” instead of
“irreducible” for modules.) However, while we excluded the one-dimensional Lie algebra
from being simple, we will not exclude a one-dimensional module from being irreducible.

Example 23. Since g acts as 0 on any trivial g-moduleV , it follows that every subspace of
V is a submodule. A trivial g-module V is therefore only simple if dimV = 1. In general,
a trivial g-moduleV decomposes as the direct sum of dimV copies of the one-dimensional
trivial g-module. N

Example 24. The adjoint module of a simple Lie algebra has no non-zero proper sub-
modules, hence is irreducible, because a simple Lie algebra has no non-zero proper ideals.
Indeed, a Lie algebra is simple if and only if its adjoint module is irreducible. N
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The analogue of semisimplicity for Lie algebras is complete reducibility: a g-module is
said to be completely reducible if it is a (finite) direct sum of simple g-modules. (Again,
mathematicians often use “semisimple” instead of “completely reducible”.) We explain
the notion of a direct sum of modules, along with some other frequently encountered
gadgets, in the following exercise.

Exercise 29. Let g be a Lie algebra and let V andW be g-modules.

(a) Show that the vector space direct sum V ⊕W becomes a g-module under the action

(2.58) x(v ⊕w) = (xv) ⊕ (xw), for all x ∈ g, v ∈ V andw ∈W .

The g-module V ⊕W is called the direct sum of V andW .
(b) Show that the vector space tensor productV ⊗W does not become a g-module under

(2.59) x(v ⊗w) = (xv) ⊗ (xw), for all x ∈ g, v ∈ V andw ∈W .

(c) Show that

(2.60) x(v ⊗w) = (xv) ⊗w +v ⊗ (xw), for all x ∈ g, v ∈ V andw ∈W ,

extended by linearity to all V ⊗W , does result in a g-module: the tensor product of
V andW .

(d) Show that the vector space dualV ∗, ie. the space of linear functionals f fromV to the
ground field, becomes a g-module under the action

(2.61) (x f )(v) = −f (xv), for all x ∈ g, f ∈ V ∗ and v ∈ V .

What goes wrong if we omit the minus sign in this action? H

Proposition 2.2. A finite-dimensional g-module V is completely reducible if and only if
every submoduleW ⊆ V has a complement, ie. there exists a submodule X ⊆ V such that
V =W ⊕ X .

Proof. We prove that complete reducibility implies that every submodule has a comple-
ment, the converse being a simple induction argument on the dimension. So suppose that
V = V1 ⊕ · · · ⊕ Vn, where each Vi is irreducible. GivenW ⊆ V , consider the collection
S of submodules whose intersection withW is 0. Take X to be maximal in S, meaning
thatW ∩ X = 0 and X ⊂ Y implies thatW ∩ Y , 0. Such an X must exist because the
dimensions of the submodules in S are bounded above by dimV .

We want to prove that X is the desired complement ofW . SinceW ∩ X = 0, this only
requires thatW +X = V . So suppose thatW +X , V . Then, we may choose v <W +X .
Writing v as v1 + · · · +vn, where vi ∈ Vi , we conclude that some vj <W +X . This makes
Vj ∩ (W + X ) a proper submodule of Vj , hence it is 0 by the irreducibility of Vj .
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Given Vj ∩ (W + X ) = 0, we consider w ∈ W ∩ (X + Vj). We may thus write w ∈ W
as x + v′, where x ∈ X and v′ ∈ Vj . Then, v′ = w − x ∈ W + X and so v′ = 0 follows
fromVj ∩ (W +X ) = 0. This means thatw = x , which forcesw = 0, becauseW ∩X = 0,
and so we conclude thatW ∩ (X +Vj) = 0. As vj is in Vj , but not inW + X ⊇ X , we have
X ⊂ X + Vj and so this contradicts X being maximal among the submodules of S. We
therefore have V =W ⊕ X , as desired. �

Corollary 2.3. A submoduleW of a finite-dimensional completely reducible g-module V
is also completely reducible.

Proof. Let X be a submodule ofW . Then, it is also a submodule of V , hence there is
a submodule Y ⊆ V such that V = X ⊕ Y , by Proposition 2.2. We consider W ∩ Y

as a potential complement of X in W . Obviously, X ∩ (W ∩ Y ) = W ∩ (X ∩ Y ) = 0.
Moreover, X ⊆W implies thatX + (Y ∩W ) = (X +Y )∩W = V ∩W =W , by the modular
law for submodules (Exercise 30 below). This shows that every submodule ofW has a
complement, henceW is completely reducible, again by Proposition 2.2. �

Exercise 30. Prove the modular law for submodules A, B and C of some module V :

H(2.62) A ⊆ C ⇒ A + (B ∩C) = (A + B) ∩C .

Exercise 31. Prove the following version of the Krull-Schmidt theorem (cf. Proposi-
tion 2.1). If a completely reducible g-module V has two decompositions as a direct sum
of irreducible submodules,

(2.63) V ' U1 ⊕ · · · ⊕ Um and V 'W1 ⊕ · · · ⊕Wn,

then m = n and there is a permutation σ of {1, . . . ,n} such that Ui ' Wσ (i) for all
i = 1, . . . ,n. H

We remark that all of these complete reducibility results also have generalisations to
infinite-dimensional modules. However, the proofs are somewhat more subtle because
one needs certain maximal and/or minimal submodules to exist. The existence of these
submodules in general is not at all obvious and is, in fact, equivalent to the infamous axiom
of choice (see Curtis and Reiner, for example).

Direct sums of modules are quite common in the wild and are easily understood.
However, it is not normally the case that all modules are completely reducible (see
Example 28 below). If a module V may be written as the direct sum of two non-zero
submodules, V = V1 ⊕ V2, then V is said to be decomposable. The opposite notion of
course defines an indecomposable module. The existence of non-completely reducible
modules then implies the existence of modules that are indecomposable, but reducible. ie.
they possess non-zero proper submodules that are never direct summands.
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Finally, we have to discuss when two representations/modules are the same, ie. are
isomorphic. A homomorphism of modules of a Lie algebra g (a g-module homomorphism
for short) is a linear map ϕ between two g-modulesV andW that respects the two actions
of g. Precisely, this means that if · and ◦ denote the actions of g onV andW , respectively,
then ϕ : V →W must satisfy

(2.64) ϕ(x · v) = x ◦ ϕ(v), for all x ∈ g and v ∈ V .

Of course, mathematicians are a lazy bunch, so this is usually written as

(2.65) ϕ(xv) = xϕ(v), for all x ∈ g and v ∈ V ,

leaving the reader to remember that there are secretly two actions at play here. As with
Lie algebra homomorphisms (Section 2.3), a homomorphism from a g-module to itself
(ie. V = W ) is an endomorphism, a bijective homomorphism is an isomorphism and a
bijective endomorphism is an automorphism.

Exercise 32. Suppose that ϕ : V →W is a g-module homomorphism. Show that:

(a) kerϕ is a submodule of V .
(b) imϕ is a submodule ofW .
(c) IfW ′ is a submodule ofW , then the preimage

(2.66) ϕ−1(W ′) = {v ∈ V : ϕ(v) ∈W }

is a submodule of V . H

Exercise 33.

(a) Show that ifW is a submodule of a g-module V , then the canonical homomorphism
γ : V → V /W defined by γ (v) = v is a surjective g-module homomorphism.

(b) A proper submoduleW of V is said to be maximal if every submodule chain of the
formW ⊆ X ⊂ V necessarily hasW = X . Prove thatW ⊂ V is maximal if and only
if V /W is irreducible. H

In abstract algebra, there are always three isomorphism theorems that get used again
and again. The first isomorphism theorem for modules is as follows (though we state it as
a proposition rather than a theorem). You may wish to compare with the first isomorphism
theorem for Lie algebras which you proved in Exercise 17.

Proposition 2.4. If ϕ : V →W is a g-module homomorphism, then

(2.67)
V

kerϕ
' imϕ, as g-modules.
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Proof. Consider the map ϕ : V /kerϕ → imϕ given by ϕ(v) = ϕ(v), for all v ∈ V and so
for all v ∈ V /kerϕ. It is well-defined because v = w implies that v −w ∈ kerϕ, hence
ϕ(v) = ϕ(w). It is moreover injective, as 0 = ϕ(v) = ϕ(v) implies that v ∈ kerϕ, hence
v = 0. It is obviously surjective. Finally, ϕ is a g-module homomorphism as ϕ is:

�(2.68) xϕ(v) = xϕ(v) = ϕ(xv) = ϕ(xv) = ϕ(xv), for all x ∈ g and v ∈ V .

Exercise 34. Prove the second and third isomorphism theorems for modules:

2. IfW and X are submodules of a g-module V , then

(2.69)
W

W ∩ X
'
W + X

X
, as g-modules.

3. IfW is a submodule of V and X is a submodule ofW , then

H(2.70)
V /X

W /X
'

V

W
, as g-modules.

Let’s translate the definition of a g-module homomorphism back into the language of
representations. If π : g → gl(V ) and ρ : g → gl(W ) denote the representations on V and
W , respectively, then the condition for ϕ to be a g-module homomorphism becomes

(2.71) ϕ(π (x)v) = ρ(x)ϕ(v), for all x ∈ g and v ∈ V .

This may be summarised as follows (with ◦ now denoting composition of maps):

(2.72) ϕ ◦ π (x) = ρ(x) ◦ ϕ, for all x ∈ g.

V W

V W

ϕ

π (x) ρ(x)

ϕ

Because of this (equivalent) property, g-module homomorphisms are often called inter-
twiners when speaking of representations of g.

Example 25. Recall that changing the basis of a vector space V is implemented by
an invertible change-of-basis matrix S . The representing matrix A of a given linear
transformation from V to itself then changes by conjugation: A 7→ SAS−1.

If π is a representation of g on V , then we can get a new representation ρ on V by
“changing basis” as above:

(2.73) ρ(x) = Sπ (x)S−1, for all x ∈ g.

However, ρ is isomorphic to π because S is an invertible intertwiner. In other words,
changing bases can’t change the isomorphism class of the representation (phew!). N
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Example 26. Let g be the one-dimensional abelian Lie algebra and let x ∈ g be non-zero.
Then, a representation π of g on�n is completely determined by the n×nmatrixA = π (x).
As we’ve seen, conjugating by an invertible matrix S doesn’t change the isomorphism class
of the representation, so we may assume that A is in Jordan canonical form. Each Jordan
block of A is characterised by its eigenvalue λ and its size n. Moreover, it’s not too hard
to now show that the representation π is isomorphic the direct sum of the representations
specified by these Jordan blocks. N

If the representation theory of the one-dimensional Lie algebra is governed by Jordan
canonical form (so hard), it doesn’t bode well for the representation theory of non-abelian
Lie algebras. In general, you’d be right to be scared. Luckily, we’re only going to study
the representations of (semi)simple Lie algebras and these are very well behaved.
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3. All about sl(2)

We have already introduced the complex Lie algebra sl(2) and shown (Example 17) that
it is simple. We have also seen that it has at least two inequivalent real forms: su(2) and
sl(2;�). In this section, we shall study the representation theory of sl(2). Aswe shall see in
Section 4 below, this turns out to be the key to understanding the structure of all the simple
(and hence semisimple and reductive) complex Lie algebras. Moreover, the representation
theory of sl(2) is plenty interesting in its own right and we shall briefly discuss how it
arises in the classical and quantum mechanical description of angular momentum and
quantum spin.

3.1. Irreducible representations of sl(2)

As promised, we now turn our attention to the finite-dimensional irreducible represen-
tations of sl(2). We recall the basis of sl(2) consisting of the matrices

(3.1) e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
and f =

(
0 0
1 0

)
with respect to which the Lie bracket is characterised by

(3.2) [h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

Our first port of call is to remember that we are working over �, so the corresponding
modules will be finite-dimensional complex vector spaces. (We shall generally prefer to
use the language and notation of modules in what follows.)

So choose such an sl(2)-module. Because it is complex and finite-dimensional, any
given endomorphism of the underlying vector space will have an eigenvalue. In particular,
this is the case for the endomorphism representing the action of the basis elementh ∈ sl(2).
Because it is finite-dimensional, there are only finitely many eigenvalues, so there is (at
least) one, λ say, whose real part is maximal. Choose an eigenvector vλ corresponding to
the eigenvalue λ, so that

(3.3) hvλ = λvλ .

Then, evλ is also an eigenvector of h and its eigenvalue is λ + 2:

(3.4) h(evλ) = [h, e]vλ + e(hvλ) = 2evλ + e(λvλ) = (λ + 2)evλ .

However, this contradicts the fact that we chose the real part of λ to be maximal among
all eigenvalues. The only way out is to conclude that evλ is not an h-eigenvector and this
can only occur if it is instead zero:

(3.5) evλ = 0.
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Having established the action of h and e on vλ, we turn to the action of f . The same
argument as that used for e now shows that, if it is not zero, f vλ is an h-eigenvector of
eigenvalue λ − 2. We can repeat this argument with vλ replaced by f vλ to conclude that
f 2vλ = f (f vλ) is, if non-zero, an h-eigenvector of eigenvalue λ − 4. In general, we find
that f nvλ is an h-eigenvector of eigenvalue λ − 2n, for any n ∈ �>0, again provided that it
is non-zero.

Recall that eigenvectors corresponding to different eigenvalues are automatically lin-
early independent. If no f nvλ were zero, then we would infinitely many linearly in-
dependent eigenvectors in our module, contradicting the fact that it is assumed to be
finite-dimensional. We therefore conclude that there must exist n ∈ �>0 such that

(3.6) f nvλ = 0.

Crucially, we can even compute the minimal such n using the following exercise.

Exercise 35. Show inductively that the endomorphisms representing e and f satisfy

(3.7) [e, f n] = nf n−1 (h − (n − 1)1
)
, hence that e f nvλ = n(λ + 1 − n)f n−1vλ,

for all n ∈ �>0. H

For the minimal n ∈ �>0, we have f n−1vλ , 0 but

(3.8) 0 = e f nvλ = n(λ + 1 − n)f n−1vλ ⇒ n = λ + 1.

Rather amazingly, we learn from this analysis that λ = n − 1 ∈ �>0: the h-eigenvalue
with maximal real part, for a finite-dimensional (complex) sl(2)-module, is necessarily a
non-negative integer!

We can even go a step further. Along with our construction, Exercise 35 shows that the
vector subspace spanned by the f nvλ, with n = 0, 1, . . . , λ, is closed under the action of e,
h and f : it is a submodule of our sl(2)-module. If we further insist that our sl(2)-module
is irreducible, then it must coincide with the span of the f nvλ. We learn that the maximal
h-eigenvalue of a finite-dimensional irreducible (complex) sl(2)-module is a non-negative
integer λ and that the dimension of this module is λ + 1.

Example 27. The irreducible trivial representation of sl(2) has maximal h-eigenvalue 0
and dimension 1. The defining representation, introduced in Example 22, has h being
represented by a diagonal matrix with entries 1 and −1. The maximal h-eigenvalue is thus
1 and the dimension of the representation is 2. Similarly, the adjoint representation and
that appearing in Exercise 27 have maximal h-eigenvalues 2 and 3 and dimensions 3 and
4, respectively. N
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A pure mathematician would no doubt interrupt the cheering now to (correctly) object
that the above analysis assumes from the outset that we actually have, in our possession, a
finite-dimensional irreducible sl(2)-module. It therefore still remains to verify that these
modules actually exist. There are smart ways to do this (and we’ll see one later), but for
now we can fall back on brute-force methods.

Exercise 36. For λ ∈ �>0, consider the (λ + 1)-dimensional vector space spanned by
vectors wn = f nvλ, n = 0, 1, . . . , λ. Compute (λ + 1) × (λ + 1)-matrices [e], [h] and [f ]
that represent the action of e, h and f , with respect to the (ordered) basis {wn}, and prove
that they satisfy the commutation relations of sl(2). H

This exercise demonstrates that a (λ+1)-dimensional irreducible sl(2)-moduleLλ exists
for each λ ∈ �>0. The preceding argument shows that we can find a basis of any (λ + 1)-
dimensional irreducible sl(2)-module so that it is clearly Lλ. In other words, the Lλ,
λ ∈ �>0, are all the finite-dimensional irreducible sl(2)-modules, up to isomorphism. We
state this as a theorem for later reference.

Theorem 3.1. There exists an irreducible sl(2)-module Lλ of dimension λ + 1, for each
λ ∈ �>0. Moreover, these are all the finite-dimensional irreducible sl(2)-modules, up to
isomorphism.

Much easier than Jordan canonical form, right?

Exercise 37. Prove that the matrix representing the action of h on any finite-dimensional
sl(2)-module has zero trace. Use this to quickly prove that dimLλ = λ + 1, for all
λ ∈ �>0. H

Exercise 38. In this exercise, we explore whether the finite-dimensional irreducible sl(2)-
module Lλ = span{ f nvλ : n = 0, 1, . . . , λ} admits an “invariant” inner product. Such
modules are said to be unitarisable or, once an invariant inner product has been fixed,
unitary.

(a) Consider a hermitian form 〈·, ·〉 on Lλ that satisfies

(3.9) 〈vλ,vλ〉 = 1 and 〈v,xw〉 = 〈x†v,w〉, for all v,w ∈ Lλ and x ∈ sl(2),

where † is the adjoint defined in Exercise 24a. Show that this uniquely determines
the hermitian form by computing the values 〈f mvλ, f nvλ〉.

(b) Conclude that this hermitian form is an inner product, ie. that the Lλ are unitary
sl(2)-modules with this choice of adjoint.
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(c) Show that replacing † by the adjoint of Exercise 24d leads to a hermitian form on
L1 with respect to which there are (non-zero) vectors of positive, negative and zero
norm. ie. L1 is not unitary with this choice of adjoint. H

The reason for the term “unitary” in the previous exercise stems from the fact that a given
hermitian form on g restricts to a bilinear form on the real form g� (cf. Exercise 24) defined
by the adjoint †. As the real form consists of antihermitian elements (with respect to †),
exponentiating them as in Exercise 9 will give unitary elements of the corresponding real
Lie group (again, with respect to †).

Exercise 39. Show that sl(2) also possesses infinite-dimensional modules by verifying
that the vector space �[z] of polynomials becomes an sl(2)-module when equipped with
the following action (extended by linearity to all sl(2)) on each p(z) ∈ �[z]:

(3.10) e · p(z) = −zp′′(z), h · p(z) = −2zp′(z), f · p(z) = zp(z).

Show that h has a basis of eigenvectors and determine the corresponding eigenvalues.
Explain why f has no eigenvectors. What are the eigenvalues and eigenvectors of e? H

3.2. Finite-dimensional representations of sl(2)

Suppose that we are trekking through the jungles of Borneo and we happen upon an
irreducible sl(2)-module. We now know what to do: classify it by computing its maximal
h-eigenvalue (or just by figuring out its dimension). However, what if this feral sl(2)-
module isn’t irreducible? What do we do? How bad could it be? To get a glimpse of the
type of badness that awaits us in the wild world, we return (briefly) to the representation
theory of the one-dimensional Lie algebra.

Example 28. Recall from Example 26 that a finite-dimensional module of the one-
dimensional Lie algebra g is completely determined by the matrix A that represents
the action of an arbitrarily chosen non-zero x ∈ g. We suppose that the module V is
two-dimensional, for simplicity, and that A is diagonalisable. Then, A has two linearly
independent eigenvectors with eigenvalues λ and µ, respectively. The action of x (ie. acting
withA) then preserves each eigenspace: both eigenspaces,Wλ andWµ say, are submodules
of V . The sum of the eigenspaces is clearly all of V and their intersection is 0, hence we
have the direct sum decomposition

(3.11) V =Wλ ⊕Wµ .

As bothWλ andWµ are one-dimensional, hence irreducible, it follows thatV is completely
reducible (see Section 2.5).
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So this is very nice, but it turns out that bad things happen if we don’t have two linearly
independent eigenvectors, ie. if A is not diagonalisable. Let’s take

(3.12) A =

(
λ 1
0 λ

)
for definiteness. Then, the eigenvector

( 1
0
)
is preserved by the action of A and so spans a

submoduleWλ of V . However, there is no other one-dimensional submodule (it would be
a second eigenspace), so we can’t writeV as the direct sum ofWλ and another submodule.

With this A, V is reducible, because it has a non-zero proper submodule Wλ, but
indecomposable, because it cannot be written as a direct sum of two non-zero modules.
The way to understand the structure of V is then to analyse the quotient module V /Wλ.
This is the g-module of equivalence classes in whichWλ is identified with 0. Since A acts
on

( 0
1
)
to give λ

( 0
1
)
+

( 1
0
)
, the equivalence class of

( 0
1
)
is an eigenvector under the action

of A with eigenvalue λ. We therefore conclude that

(3.13)
V

Wλ
'Wλ, but V ;Wλ ⊕Wλ .

Reducible but indecomposable modules are scary, no? N

With this type of badness lurking in the representation theory of the one-dimensional
Lie algebra, it is perhaps surprising (and gratifying) to learn that the (finite-dimensional)
representation theory of sl(2) is free of such defects: all finite-dimensional sl(2)-modules
are completely reducible! ie. they are all isomorphic to a direct sum of irreducible
submodules.

Proving this is a little tricky, but it does give us the opportunity to introduce a couple
of important concepts. First up is the quadratic Casimir operator Q of sl(2). This is not
an element of sl(2); rather we shall define it as the following linear operator acting on an
arbitrary sl(2)-module:

(3.14) Q =
1
2
h2 + e f + f e .

The great utility of this definition is the fact that the quadratic Casimir commutes with the
action of sl(2) on any module V .

Exercise 40. Recalling that the Lie bracket becomes the commutator when acting on
modules, verify that [Q, e] = [Q,h] = [Q, f ] = 0. H

It therefore defines an sl(2)-module endomorphism of V :

(3.15) Q(xv) = x(Qv) for all x ∈ sl(2) and v ∈ V .

So what? Well...
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Lemma 3.2. Let V be a finite-dimensional g-module and Q : V → V be a g-module
endomorphism. Then, the generalised eigenspaces Vq of Q are submodules of V and

(3.16) V =
⊕
q

Vq .

Proof. Suppose that v ∈ Vq so that (Q − q1)nv = 0 for some n ∈ �>0 (1 is the identity
endomorphism on V ). Then, xv ∈ Vq, for all x ∈ g, because

(3.17) (Q − q1)nxv = x(Q − q1)nv = x0 = 0.

TheVq are thus submodules. Linear algebra informs us that their sum is all ofV and their
pairwise intersections are 0, so we get (3.16). �

Lemma 3.3 (Schur’s lemma). Let Q : V → V be a g-module endomorphism, where V is
an irreducible finite-dimensional complex g-module. Then, Q acts on V as a multiple of
the identity endomorphism.

Proof. Since V is finite-dimensional and complex, Q has an eigenvalue λ. Consider now
the g-module endomorphismQ −λ1 onV . Its kernel is a submodule ofV , by Exercise 32,
hence it is eitherV or 0 becauseV is irreducible. However, the eigenvector corresponding
to λ belongs to ker(Q −λ1), hence the kernel is not 0. It is thereforeV and so we conclude
that Q − λ1 = 0 on V . �

Exercise 41. Show that Schur’s lemma fails over�by constructing an irreducible real two-
dimensional module V for the real one-dimensional Lie algebra u(1) and a u(1)-module
endomorphism of V that isn’t a multiple of the identity. H

Recall the (λ+1)-dimensional irreducible sl(2)-moduleLλ, λ ∈ �>0, that we constructed
in Section 3.1. Schur’s lemma says that the quadratic Casimir acts as a multiple of the
identity on Lλ. It’s easy to determine this multiple because we can just act with the
quadratic Casimir on any non-zero element in Lλ. In particular, the h-eigenvector vλ of
eigenvalue λ is convenient because it is annihilated by e:

Qvλ =

(
1
2
h2 + e f + f e

)
vλ =

(
1
2
h2 + e f

)
vλ =

(
1
2
h2 + [e, f ]

)
vλ(3.18)

=

(
1
2
h2 + h

)
vλ =

(
1
2
λ(λ + 2)

)
vλ .

Notice that the multiples 1
2λ(λ + 2) are different for each different λ ∈ �>0. The qua-

dratic Casimir therefore distinguishes between all the finite-dimensional irreducible sl(2)-
modules (up to isomorphism of course).
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Lemma 3.4. LetV be a finite-dimensional sl(2)-module on which the quadratic CasimirQ
has a single eigenvalue q. Then, the eigenvalues of h onV are precisely the elements of the
set Sλ = {λ, λ−2, . . . ,−λ+2,−λ}, where λ ∈ �>0 is uniquely determined by q = 1

2λ(λ+2).

Proof. Since dimV < ∞, h has an eigenvector v ∈ V . Let µ be the corresponding
eigenvalue. For each j ∈ �>0, the vector e jv is either an h-eigenvector, with eigenvalue
µ + 2j, or it is 0. Indeed, dimV < ∞ also implies that there exists some n ∈ �>0 such
that env , 0 and en+1v = 0. Let λ′ = µ + 2n denote the h-eigenvalue of env. Since e
annihilates env, (3.18) shows that env is an eigenvector of Q of eigenvalue 1

2λ
′(λ′ + 2).

This eigenvalue is necessarily q, by hypothesis.
Now act on vλ′ = env with powers of f . Again, dimV < ∞ means that there exists

m such that f mvλ′ , 0 and f m+1vλ′ = 0. The analysis of Section 3.1, particularly
Equation (3.8), then shows that λ′ = m ∈ �>0. But, q = 1

2λ
′(λ′ + 2) has a unique non-

negative solution: λ′ = λ. The f jvλ, j = 0, 1, . . . , λ, are therefore h-eigenvectors whose
eigenvalues fill out the set Sλ.
It remains to show that the arbitrary eigenvalue µ also lies in Sλ. Assume then that

µ < Sλ. Since µ = λ − 2n, n ∈ �>0, this may only happen if µ < −λ. Once again,
dimV < ∞ gives the existence of ` ∈ �>0 such that f `v , 0 but f `+1v = 0. Let ν = µ−2`
be the h-eigenvalue of f `v, so that −ν = −µ + 2` > λ. Then, f `v is a Q-eigenvector:

(3.19) Q f `v =

(
1
2
h2 + f e

)
f `v =

(
1
2
h2 − h

)
f `v =

1
2
ν (ν − 2)f `v .

However, its Q-eigenvalue therefore satisfies

(3.20) q =
1
2
(−ν )(−ν + 2) >

1
2
λ(λ + 2) = q,

which is the desired contradiction. �

We’re now ready to prove the complete reducibility of all finite-dimensional sl(2)-
modules.

Theorem 3.5 (Weyl). Every finite-dimensional (complex) sl(2)-module is completely
reducible.

Proof. Let V be a finite-dimensional sl(2)-module. By Lemma 3.2, it decomposes as a
direct sum of the generalised eigenspaces Vq of the quadratic Casimir Q (here q is the
eigenvalue of Q). We therefore need only show that the Vq are completely reducible. If
Vq = 0, then this is trivially the case, so assume that Vq , 0.

Choose amaximal completely reducible submoduleM ofVq. M is therefore isomorphic
to the direct sum of a finite number of copies ofLλ, where λ ∈ �>0 is uniquely determined
by q = 1

2λ(λ + 2). As h acts diagonalisably on each Lλ, it acts diagonalisably on M . Our
aim is to prove thatM = Vq. We shall do so by contradiction.
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So suppose that M , Vq, hence that Vq/M , 0. By Lemma 3.4, the eigenvalues of h on
Vq/M are then precisely those in Sλ = {λ, λ − 2, . . . ,−λ + 2,−λ}. Since dim(Vq/M) < ∞,
there is an h-eigenvector v ∈ Vq/M of eigenvalue λ (here, v denotes an arbitrary preimage
inVq). Since (h − λ1)v = (h−λ1)v = 0, we must have (h−λ1)v = w for somew ∈ M . By
projecting onto the generalised eigenspace corresponding to eigenvalue λ, we may assume
that both v andw belong to this eigenspace.

Suppose that w is not zero, ie. that h has a non-trivial Jordan block. Because λ + 2
is not an h-eigenvalue on M , again by Lemma 3.4, it follows that ew is zero. As h acts
diagonalisably on M , it follows that the f nw , with n = 0, 1, . . . , λ, span a submodule of
M isomorphic to Lλ. In particular, f λw , 0. Similarly, we must have ev = f λ+1v = 0
because λ + 2 and −λ − 2 are not h-eigenvalues on Vq. Using Exercise 35, we now get

(3.21) 0 = e f λ+1v = [e, f λ+1]v = (λ + 1)f λ(h − λ1)v = (λ + 1)f λw , 0,

a contradiction.
Our supposition that w , 0 must be false, hence w = 0 and so v is an eigenvector of

h with eigenvalue λ that is annihilated by e. As v , 0, we must have v < M . Hence
the submodule N ' Lλ spanned by the f nv, with n = 0, 1, . . . , λ, has zero intersection
with M . Therefore, M ⊕ N is a completely reducible submodule of Vq, contradicting the
maximality of M . Our supposition that M , Vq must be false, hence M = Vq and so Vq is
completely reducible as required. �

To summarise, we have shown that every finite-dimensional sl(2)-module V is com-
pletely reducible, ie. isomorphic to a direct sum of irreducible submodules:

(3.22) V '
⊕
λ∈�>0

mλLλ .

Here, the multiplicities mλ give the number of copies of Lλ in this decomposition. Of
course, we expect that such decompositions as direct sums are (essentially) unique. This
is guaranteed by the Krull-Schmidt theorem for modules (Exercise 31).

Exercise 42. Unfortunately, infinite-dimensional sl(2)-modules can suffer from the bad-
ness of not being completely reducible. Verify this by showing that the sl(2)-module of
Exercise 39 is reducible, but not completely reducible. H

3.3. An application to quantum mechanics

We’ve sorted out the finite-dimensional representation theory of sl(2). Let’s now take a
moment to appreciate how it applies to quantum mechanics through the intrinsic spin of a
particle.

Recall from Example 10 that the position and momentum of a quantum system are
modelled by operators x and px , respectively, that satisfy [x ,px ] = i~1, where ~ , 0 and
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1 is central. We called this Lie algebra the Heisenberg algebra and it acts on the Hilbert
space (ie. a vector space with extra-nice structure) of quantum states. It follows that the
quantum state space is a module for the Heisenberg algebra. We shall assume that 1 acts
on the quantum state space as the identity operator.

Exercise 43. Use traces to show that a finite-dimensional representation of the ~ , 0
Heisenberg algebra may not have 1 represented by the identity operator. It follows that the
quantum state space is necessarily infinite-dimensional. H

In three-dimensional space, we need similar operators y, z, py and pz , so we take the
direct sum of three copies of the Heisenberg algebra. As the three central operators 1x ,
1y and 1z are all assumed to act as the identity, we may identify them if we wish (this
amounts to quotienting the direct sum by the ideal spanned by 1x − 1y and 1y − 1z). In
classical mechanics, angular momentum is defined to be the cross product of the position
and momentum vectors, hence the quantised angular momentum operators are given by

(3.23) Jx = ypz − zpy, Jy = zpx − xpz, Jz = xpy − ypx .

These operators span a representation of sl(2) on the quantum state space.

Exercise 44. Show that

(3.24) [Jx , Jy] = i~Jz, [Jy, Jz] = i~Jx and [Jz, Jx ] = i~Jy .

Consequently, verify that

(3.25) e =
1
~
(Jx + iJy), h =

2
~
Jz and f =

1
~
(Jx − iJy)

satisfy the commutation relations of sl(2). H

As far as quantum spin is concerned, elementary particles are modelled by irreducible
sl(2)-modules. There is a subtlety to mention here. Exercise 43 shows that the quantum
state space is infinite-dimensional, so it is possible that the quantum state space is not
completely reducible (cf. Exercise 42) or that it decomposes as a direct sum of irreducible
sl(2)-modules, some of which are infinite-dimensional. However, it turns out that this is
not the case and one can consistently restrict attention to the finite-dimensional irreducibles
that we classified in Section 3.1. We shall not prove this here, but interested parties can
look up such wonderful things as spherical harmonics and the Peter–Weyl theorem.

Having addressed (ignored) this subtlety, we can get on with things. Each (non-zero)
vector (called the quantum state) in the module is a possible description of the particle’s
spin in the z-direction (say) is given by the eigenvalue of Jz on its quantum state. Note
that it follows from Theorem 3.1 that this eigenvalue belongs to a discrete set: they are
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always 1
2~ times an integer. We therefore say that the z-component of the particle’s spin is

quantised. Of course, there is nothing special about the z-direction here.
It is common to describe a particle as having a given spin. This does not mean that the

z-component is fixed. Rather, the spin of the elementary particle is defined to be half of
the maximal eigenvalue of h. Spin is therefore a non-negative half-integer. The celebrated
spin-statistics theorem (which we won’t prove) states that bosonic particles (eg. photons,
gravitons, the Higgs) always have integer spins (1, 2 and 0, respectively) while fermionic
particles (eg. protons, neutrons, electrons) always have non-integer spins (all spin-1

2 ).

Exercise 45. Recall the quadratic Casimir of sl(2), defined in (3.14). Show that this has a
quantum mechanical interpretation, up to an unimportant proportionality constant, as the
total angular momentum operator

(3.26) |J |2 = J 2
x + J

2
y + J

2
z .

Recall that the Casimir commutes with the action of sl(2). What does this mean for the
quantum states of a given irreducible representation? [Hint: what does Schur say?] H

It would be remiss not tomention now that physicists rarely, if ever, mention the complex
Lie algebra sl(2) in the context of quantum spin. Instead, they invariably speak of the real
Lie group SU(2). What gives? Spin is all about rotating, so you’d think that if any Lie
group was going to be relevant, it would be the rotation group in three dimensions: SO(3).
If we only cared about the classical world, then SO(3) would be the group we’re after.

But quantum mechanics has to be different and one way in which this difference manifests
is in the representation theories of Lie groups, as we shall now explain.

We saw inExercises 11 and 12 that the real Lie algebras so(3) and su(2)were isomorphic,
but that the corresponding real Lie groups were distinguished by the number of elements
in their centres: 1 for SO(3) and 2 for SU(2). We also saw, in Exercise 9, that the
matrix exponential (in the defining representation) maps each of these Lie algebras onto
its corresponding Lie group. Recalling the standard basis {e,h, f } of the complexification
sl(2), we see that (in the defining representation) π ih =

(
π i 0
0 −π i

)
is antihermitian and

traceless, hence belongs to su(2). Moreover, its matrix exponential eπ ih =
(
−1 0
0 −1

)
is

clearly the non-trivial central element of SU(2).

Exercise 46. Use the explicit isomorphism you constructed in Exercise 11 to write π ih ∈
su(2) in terms of a 3 × 3 matrix in the defining representation of so(3). Verify that eπ ih is
the identity matrix in this representation. H

This exercise shows that eπ ih is central in SO(3), hence is the group unit. Now comes
the important bit: the group unit must always be represented by the identity matrix on any
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SO(3)-module. As our irreducible sl(2)-modules Lλ, λ ∈ �>0, obviously define so(3)-
modules (just restrict the representation homomorphism to so(3) ' su(2) ↪→ sl(2;�)), we
can now explicitly test whether they define SO(3)-modules or not. This is easy because
we know that h can be diagonalised on Lλ with eigenvalues λ, λ − 2, . . . ,−λ + 2,−λ. It
follows that eπ ih is the identity matrix, if λ is even, and is minus the identity, if λ is odd. We
conclude that the Lλ, with λ odd (ie. non-integer spin), are not representations of SO(3).

As quantum mechanics needs half-integer spin particles (fermions are pretty common
in everyday life after all), SO(3) is not the correct group to describe quantum-mechanical
spin. SU(2) is a good alternative because it has a non-trivial central element that can be
represented by minus the identity. It is possible to mathematically prove that SU(2) is
in fact the correct choice. However, we shall not do so here — interested parties should
search for the keywords “covering group” and “central extension”.

We shall instead recall that the spin σ is given as half the h-eigenvalue, hence the central
element that we have been studying is e2π iσ . The action of this element on a quantum
state has the physical interpretation of rotating the corresponding particle by 2π around
the origin, ie. back to where it started. If the spin is integer, as for bosons, then the state is
invariant under a 2π -rotation. If however the spin is not an integer, as for fermions, then
the state picks up a minus sign upon 2π -rotations. It is only invariant under a 4π -rotation.
This distinction between quantum states of bosonic and fermionic particles is absolutely
fundamental in physics and boils down, as we have seen, to some nifty Lie theory.

Let us now turn to a second nifty application of Lie theory to quantum mechanics.
This also involves quantum spins, but now asks what happens if we want to consider a
system of two (or more) elementary particles, eg. a hydrogen atom (proton + electron) or
a deuterium nucleus (proton + neutron). The laws of physics tell us that the quantum spin
of the composite systems should be modelled as the tensor product of the representations
that model the elementary particles. We recall from Exercise 29 that the tensor product
of two sl(2)-modules is again an sl(2)-module.

Consider the tensor product of the irreducible sl(2)-module L1 with itself. Since
spin is half the maximal h-eigenvalue, this describes a composite system of two spin-1

2
fermions (eg. a hydrogen atom or a deuterium nucleus). Recall that dimL1 = 2, hence
dim(L1 ⊗ L1) = 4. As a finite-dimensional sl(2)-module, L1 ⊗ L1 therefore decomposes
as a direct sum of irreducible sl(2)-modules, by Weyl’s theorem. There are therefore five
possibilities for this decomposition:

(3.27) L3, L0 ⊕ L2, L1 ⊕ L1, L0 ⊕ L0 ⊕ L1 and L0 ⊕ L0 ⊕ L0 ⊕ L0.

How can we tell which it is? The easiest way is to letv1 denote the eigenvector of maximal
h-eigenvalue (1) in L1 and compute the h-eigenvalue of v1 ⊗ v1 ∈ L1 ⊗ L1:

(3.28) h(v1 ⊗ v1) = (hv1) ⊗ v1 +v1 ⊗ (hv1) = v1 ⊗ v1 +v1 ⊗ v1 = 2(v1 ⊗ v1).
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As the only one of the five possibilities above to contain an h-eigenvector of eigenvalue 2
is the second, it follows that

(3.29) L1 ⊗ L1 ' L0 ⊕ L2.

In physics language, this means that a composite system of two spin-1
2 fermions is equiv-

alent to a linear superposition of a spin-0 and a spin-1 system. In particular, two fermions
behave collectively like a boson.

This calculation is easy to generalise, though you should be careful with your arguments!

Exercise 47.

(a) Let ΓV denote the set ofh-eigenvalues of the finite-dimensional sl(2)-moduleV . Show
that

(3.30) ΓV⊕W = ΓV ∪ ΓW and ΓV⊗W = ΓV + ΓW .

(b) Use this to (carefully!) decompose the tensor product L1 ⊗ Lµ , for any µ ∈ �>0.
(c) Now use the fact that the tensor product of sl(2)-modules is commutative and associa-

tive, along with the fact that it distributes over direct sums, to deduce the well-known
tensor product formula for irreducible finite-dimensional sl(2)-modules:

H(3.31) Lλ ⊗ Lµ ' L|λ−µ | ⊕ L|λ−µ |+2 ⊕ · · · ⊕ Lλ+µ−2 ⊕ Lλ+µ , for all λ, µ ∈ �>0.

(3.31) is stated (without proof!) in pretty much every single quantum mechanics text in
terms of the spins j1 = 1

2λ and j2 =
1
2µ. More precisely, they state that the quantum spin

(or angular momentum) j of a state in the composite system must satisfy

(3.32) |j1 − j2 | 6 j 6 j1 + j2

(and j must be an integer or half-integer according as to whether j1 + j2 is an integer or
half-integer). This is often referred to as “addition of angular momenta” or the “Clebsch–
Gordan rule for quantum spin” (or something like that).
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4. Semisimple Lie algebras

We now return to the world of finite-dimensional semisimple complex Lie algebras,
with the aim of developing tools to understand them in considerable detail. These include
the Killing form, as introduced by Cartan, and the Cartan matrix, which was introduced by
Killing. We shall also need to study Cartan subalgebras which, thankfully, were actually
introduced by Cartan. This leads to the notions of roots and root systems whose properties
ultimately lead to a means of classifying the simple complex Lie algebras. In this section,
the ground field is always assumed to be � unless specified to the contrary.

4.1. The Killing form

Recall that in (2.37), we defined (a special example of) the linear map ad(x) : g→ g by

(4.1) ad(x)y = [x ,y], for all y ∈ g.

We can use this to define a surprisingly useful bilinear form on the Lie algebra g, the
Killing form, by

(4.2) κ(x ,y) = tr
[
ad(x) ad(y)

]
, for all x ,y ∈ g.

Note that we are allowed to take the product of the linear maps ad(x) and ad(y).

Exercise 48. Show that the Killing form is symmetric and invariant:

H(4.3) κ(x ,y) = κ(y,x) and κ([x ,y], z) = κ(x , [y, z]), for all x ,y, z ∈ g.

This latter condition may be written in the form κ(− ad(y)x , z) = κ(x , ad(y) z) which
indicates that ad(y) is antihermitian with respect to the Killing form. Recall that being
antihermitian is the Lie-algebraic analogue of being unitary at the group level. This is the
reason for the name “invariance”: the group action preserves the form.

Exercise 49. Given a basis {ti} of a Lie algebra g, we define the structure constants cijk
of g (with respect to this basis) by

(4.4) [ti , tj] =
∑
k

cijktk .

Prove that if the ti are orthonormal with respect to the Killing form, ie. κ(ti , tj) = δij , then
the structure constants are totally antisymmetric:

H(4.5) cijk = cjki = ckij = −cjik = −cikj = −ckji .

Example 29. If g is abelian, then ad(x)y = [x ,y] = 0 for all y ∈ g. Thus, ad(x) = 0 for
all x ∈ g and the Killing form κ is identically zero. N
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Example 30. A basis of t(2) is given by the matrices

(4.6) 1 =

(
1 0
0 1

)
, h =

(
1 0
0 −1

)
and e =

(
0 1
0 0

)
and the Lie bracket in this basis is characterised by

(4.7) [h, e] = 2e, [h, 1] = 0 and [e, 1] = 0.

With respect to this basis, we have matrix representatives

(4.8) ad(1) =
©­­«
0 0 0
0 0 0
0 0 0

ª®®¬ , ad(h) =
©­­«
0 0 0
0 0 0
0 0 2

ª®®¬ and ad(e) =
©­­«
0 0 0
0 0 0
0 −2 0

ª®®¬ .
The matrix representing the Killing form is thus

N(4.9) κ =
©­­«
0 0 0
0 4 0
0 0 0

ª®®¬ .
Example 31. Recall the basis {e,h, f } of sl(2) given in (3.1) and the explicit Lie brackets
given in (3.2). With respect to this basis, we determine the following matrix representa-
tives:

(4.10) ad(e) =
©­­«
0 −2 0
0 0 1
0 0 0

ª®®¬ , ad(h) =
©­­«
2 0 0
0 0 0
0 0 −2

ª®®¬ and ad(f ) =
©­­«

0 0 0
−1 0 0
0 2 0

ª®®¬ .
The matrix representing the Killing form is thus

N(4.11) κ =
©­­«
0 0 4
0 8 0
4 0 0

ª®®¬ .
We know that the Killing form is always symmetric and invariant. It turns out that

an important question to ask is when it is non-degenerate? Let us define the kernel (or
radical) of a bilinear form B on g by

(4.12) kerB = {x ∈ g : B(x ,y) = 0 for all y ∈ g}.

Obviously, the centre z(g) of g (cf. Exercise 15) is in the kernel kerκ of the Killing form.
However, the kernel may be strictly larger as Example 30 shows.

Exercise 50. Let B be an invariant bilinear form B on g (such as the Killing form). Show
that:

(a) kerB is an ideal of g.
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(b) If h is an ideal of g, then its orthogonal complement with respect to B, defined by

(4.13) h
⊥ = {x ∈ g : B(x ,y) = 0 for all y ∈ h},

is also an ideal of g. H

It follows from Exercise 50a that if g is simple, then either kerκ is all of g, meaning that
κ is identically zero, or kerκ is 0, meaning that κ is non-degenerate. In fact, one can show
that κ = 0 is impossible for simple g, though we shall not do so here. It follows easily
from this that semisimple Lie algebras have non-degenerate Killing forms.

In fact, this can be strengthened to the following important statement, known asCartan’s
criterion for semisimplicity.

Theorem 4.1. A finite-dimensional complex Lie algebra g is semisimple if and only if its
Killing form is non-degenerate.

The proof requires a lengthy digression through the theory of solvable Lie algebras and
may be found in most standard textbooks.

Exercise 51. Suppose that g '
⊕

i gi is semisimple with each ideal gi simple. Prove that
[gi , gj] = 0 and κ(gi , gj) = 0, whenever i , j. H

Exercise 52. Prove that the complex Lie algebras so(4) and sp(4) are semisimple by
choosing bases and computing the determinant of the matrix representing the Killing
form. You may use a computer to perform all the boring linear algebra as long as you
explain the method in detail. H

Example 32. We compute explicitly the Killing form of gl(n). Let Eij denote the elemen-
tary n × n matrix whose entries are all 0 except for the (i, j)-th one, which is 1. Then, any
A ∈ gl(n) has the expansion

(4.14) A =
n∑

i,j=1
aijEij , for some aij ∈ �.

For A,B ∈ gl(n), we compute

ad(A) ad(B)Ers = [A, [B,Ers]] =
n∑

i,j,k,`=1
aijbk`[Eij , [Ek`,Ers]](4.15)

=

n∑
i,j,k,`=1

aijbk`[Eij ,δ`rEks − δskEr`]

=

n∑
i,j,k,`=1

aijbk`
(
δ`rδjkEis − δ`rδsiEkj − δskδjrEi` + δskδ`iEr j

)
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=

n∑
i,j=1

aijbjrEis −
n∑

j,k=1
asjbkrEkj −

n∑
i,`=1

airbs`Ei` +
n∑

j,`=1
a`jbs`Er j .

The Killing form entryκ(A,B) is the trace of ad(A) ad(B), so wemust extract the coefficient
of Ers :

(4.16)
n∑
j=1

ar jbjr − assbrr − arrbss +
n∑̀
=1

a`sbs` = (AB)rr − assbrr − arrbss + (BA)ss .

Summing over the basis elements Ers , r , s = 1, . . . ,n, therefore gives

N(4.17) κ(A,B) = n tr(AB) − trA trB − trA trB + n tr(BA) = 2n tr(AB) − 2 trA trB.

Exercise 53. Recall from Exercise 19 that gl(n) ' sl(n) ⊕ gl(1).

(a) Using (4.17), argue carefully that the Killing form of sl(n) is given by

(4.18) κ(A,B) = 2n tr(AB).

If you think that this is obvious, check your understanding by comparing the Killing
forms of t(2), computed in Example 30, and gl(2).

(b) Show that the basis of sl(n) given by

(4.19) {Hi = Eii − Ei+1 i+1 : 1 6 i 6 n − 1} ∪
{
Eij : 1 6 i , j 6 n

}
block-diagonalises the matrix of the Killing form.

(c) Show that {Eij ,Eji} always forms an invertible 2 × 2 block in this diagonalisation.
(d) Write down the matrix for the {Hi} block and show by induction on n that it is also

invertible.

This proves that the Killing form of sl(n) is non-degenerate, hence that sl(n) is semisimple.
By Exercise 19, it now follows that gl(n) is reductive. H

Recall that the matrices A and B in (4.18) may be regarded as the representatives of
the corresponding abstract elements a and b in the defining representation π of sl(n) (see
Section 2.5). In other words, the Killing form is proportional to the trace form given by

(4.20) κπ (A,B) = tr
[
π (a)π (b)

]
.

It turns out that the trace form, with respect to any (finite-dimensional) representation, of
a simple Lie algebra is always proportional to the Killing form. The fact that this holds
for the defining representation of sl(n) should give us hope that this Lie algebra is simple.
(Recall that we proved that sl(2) was simple in Example 17).

Exercise 54. Any bilinear form B(·, ·) on a finite-dimensional Lie algebra g defines a linear
map ϕB : g→ g∗ by

(4.21) ϕB(x)(y) = B(x ,y), for all x ,y ∈ g.
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(a) Why is ϕB(x) a linear functional? Why is ϕB a linear map?
(b) Recalling Exercise 29, show that if B is invariant, then ϕB is a g-module homomor-

phism from the adjoint module to its dual.
(c) Show that if B is non-degenerate, then ϕB is an isomorphism.
(d) Use Schur’s lemma (Lemma 3.3) to conclude that every invariant bilinear form on a

simple Lie algebra g is proportional to the Killing form.
(e) Check that κπ (x ,y) = tr

[
π (x)π (y)

]
, x ,y ∈ g, defines an invariant bilinear form on g

for any representation π . Give an example showing that this form may be degenerate,
even when g is simple. H

4.2. Cartan subalgebras

The basis (4.19) of sl(n) has a number of nice properties. First, it naturally defines a
decomposition of sl(n) into the direct sum of three Lie subalgebras (not ideals):

• An abelian subalgebra sl(n)0 consisting of the (traceless) diagonal matrices (the Hi).
• A subalgebra sl(n)+ consisting of the strictly upper-triangular matrices (the Eij , i < j).
• A subalgebra sl(n)− consisting of the strictly lower-triangular matrices (the Eij , i > j).

The nice properties include the following:

• sl(n)0 is maximal in the sense that it is not properly contained in any other abelian
subalgebra of sl(n).
• Both sl(n)+ and sl(n)− are preserved by the adjoint action of sl(n)0 and these actions are
diagonalisable.
• sl(n)+ and sl(n)− are isomorphic as Lie algebras (take A 7→ −Aᵀ say).

This decomposition generalises to many other classes of Lie algebras including the
semisimple and reductive ones. It is known as a triangular decomposition:

(4.22) g = g+ ⊕ g0 ⊕ g−.

The nice properties likewise generalise, though they take somewhat more complicated
forms depending on which class of Lie algebras we consider. For semisimple Lie algebras,
we have the following:

• g0 is a maximal ad-diagonalisable subalgebra in that it consists of elements x ∈ g

for which ad(x) is diagonalisable and it is not properly contained in any other ad-
diagonalisable subalgebra.
• Both g+ and g− are preserved by the adjoint action of g0.
• g+ and g− are isomorphic as Lie algebras.

We mention that Humphreys uses the term “toral subalgebra” instead of ad-diagonalisable
subalgebra. If g is semisimple, then we shall refer to any maximal ad-diagonalisable
subalgebra as a Cartan subalgebra.
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Here are two important facts about Cartan subalgebras of semisimple Lie algebras. We
will not prove either of them.

Proposition 4.2.

(a) Every non-zero semisimple Lie algebra g has a non-zero Cartan subalgebra.
(b) Cartan subalgebras are not unique, but any two Cartan subalgebras of a semisimple

Lie algebra g are related by an automorphism of g.

The fact that all Cartan subalgebras g0 ⊂ g are related by automorphisms means that they
all have the same dimension. This dimension is called the rank of g:

(4.23) rank g = dim g0.

It is an invariant of g, meaning that two semisimple Lie algebras with different ranks
cannot be isomorphic.

One important fact (that we can prove) gives a hint as to why ad-diagonalisable subal-
gebras are generally important.

Proposition 4.3. Every ad-diagonalisable subalgebra h of a Lie algebra g is abelian.

Proof. Suppose that this were false. As h is a subalgebra of g, this would mean that there
exists x ∈ h such that ad(x) : h→ h has an eigenvector y ∈ h with a non-zero eigenvalue:

(4.24) [x ,y] = λy, for some λ , 0.

It follows that ad(y)x = −λy , 0. Since ad(y) is diagonalisable, x may be written as
a sum of (linearly independent) eigenvectors xi of ad(y) and some of the corresponding
eigenvalues λi must be non-zero:

(4.25) x =
∑
i

xi ⇒ 0 , ad(y)x =
∑
i

λixi , with some λi , 0.

But, this would imply that ad(y)2 x =
∑

i λ
2
i xi , 0. However,

(4.26) ad(y)2 x = [y, [y,x]] = −[y, [x ,y]] − [x , [y,y]] = −[y, λy] = 0,

so we have a contradiction. �

Corollary 4.4. A maximal abelian subalgebra that is also ad-diagonalisable is thus a
maximal ad-diagonalisable subalgebra.

We illustrate the idea of maximal ad-diagonalisable subalgebras and Cartan subalgebras
with some familiar examples.
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Example 33. We saw in Exercise 53 that sl(n) is semisimple. Here, we shall show that
the elementsHi , 1 6 i 6 n− 1, of the basis (4.19) span a Cartan subalgebra sl(n)0 of sl(n).
It will follow that the rank of sl(n) is n − 1.

First note that each ad(Hi) is diagonalisable. In fact, the basis (4.19) consists of its
eigenvectors:

(4.27) [Hi ,Hj] = 0, [Hi ,Ejk] =
(
δij − δi+1 j − δik + δi+1k

)
Ejk , for j , k .

Since the Hi-eigenvalues corresponding to the Ejk never simultaneously vanish, the space
sl(n)0 spanned by the Hi is maximal abelian. It is therefore maximal ad-diagonalisable,
by Corollary 4.4, hence it is a Cartan subalgebra of sl(n). N

Exercise 55. It is important to realise that a maximal abelian subalgebra of a semisimple
Lie algebra need not be a Cartan subalgebra. Show that the subspace of sl(2m) spanned
by the Eij with i = 1, . . . ,m and j = m + 1, . . . , 2m is a maximal abelian subalgebra, but
that it is not a Cartan subalgebra because it contains a non-ad-diagonalisable element. H

Exercise 56. In Exercise 7, you (should have) showed that sp(2n) consists of the 2n × 2n
matrices X that satisfy

(4.28) Xᵀ J + JX = 0,

where J is invertible and antisymmetric. If we take X and J to have the n × n-block forms

(4.29) X =

(
A B

C D

)
and J =

(
0 1

−1 0

)
,

cf. (2.1), then the defining relation of sp(2n) becomes

(4.30) Aᵀ = −D, Bᵀ = B, Cᵀ = C .

As with sl(n), the abelian subalgebra h of diagonal matrices of sp(2n) is a good candidate
for a maximal ad-diagonalisable subalgebra.

(a) Show that

(4.31) {Hi = Eii − En+i n+i : 1 6 i 6 n}

is a basis for h.
(b) Show that

{Hi : 1 6 i 6 n} ∪
{
Ei n+j + Ej n+i ,En+i j + En+j i : 1 6 i < j 6 n

}
(4.32)

∪
{
Eij − En+j n+i : 1 6 i , j 6 n

}
∪ {Ei n+i ,En+i i : 1 6 i 6 n}

is a basis of sp(2n) that consists of ad(Hi)-eigenvectors (for all i). What are the
corresponding eigenvalues?

(c) Conclude that h is maximal abelian, hence maximal ad-diagonalisable. H



50 D RIDOUT

We shall not refer to h as a Cartan subalgebra of sp(2n) because we do not know that the
latter is semisimple (yet).

The same tricks work for so(n), but with two provisos. The first is that orthogonality at
the group level translates into antisymmetry at the algebra level. The only diagonal matrix
in the real orthogonal Lie algebras is thus the zero matrix and the same is therefore true
for their complexifications so(n). This makes it hard to guess a maximal ad-diagonalisable
subalgebra. Wemay surmount this by changing thematrix representing the non-degenerate
symmetric bilinear form from the n × n identity matrix to another invertible symmetric
matrix. The leads us to the second proviso: the matrix we choose should have a different
form for n even and n odd. This is not a bug, but a feature: the structure of so(n) indeed
does depend on the parity of n.

Exercise 57. Accordingly, so(n) may be taken to consist of the complex n × n matrices X
satisfying

(4.33) XᵀK + KX = 0,

where K has the block form

(4.34) K =

(
0 1m

1m 0

)
(n = 2m) or K =

©­­«
0 1m 0
1m 0 0
0 0 1

ª®®¬ (n = 2m + 1)

and 1m denotes them ×m identity matrix.

(a) For each parity of n, write down an appropriate block form for X and determine the
conditions on the blocks imposed by the defining relation (4.33).

(b) Use these conditions to write down a basis {Hi} for the abelian subalgebra h of
diagonal matrices of so(n).

(c) Find a basis of so(n) that consists of simultaneous eigenvectors of the Hi .
(d) By examining the corresponding eigenvalues, conclude that h is a maximal ad-

diagonalisable subalgebra of so(n). H

Again, we shall have to wait until we show that the so(n) are semisimple before we can
refer to h as a Cartan subalgebra. Actually, there is one orthogonal Lie algebra that is not
semisimple: so(2) is one-dimensional, hence abelian, so it cannot be semisimple.

At this point, we have (candidate) Cartan subalgebras for the complex Lie algebras sl(n),
sp(2n) and so(n), as well as explicit formulae for the adjoint actions of these subalgebras.
This turns out to be the key to understanding the structure theory of (finite-dimensional
complex) semisimple Lie algebras and will lead to their classification. Here, we note
that the Lie algebras sl(n), sp(2n) and so(n) are referred to as the classical Lie algebras,
presumably because they are so easy to define that they were studied in classical times.
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4.3. Roots

In the last section, we studied ad-diagonalisable subalgebras h of a Lie algebra g, noting
in Proposition 4.3 that they were automatically abelian. The reason why we care about
ad-diagonalisability is the following well-known result from linear algebra that is too
commonly omitted from standard courses.

Proposition 4.5. If two endomorphisms of a vector space commute and are are diagonal-
isable, then they may be simultaneously diagonalised. That is, there exists a basis such
that the representing matrices of the endomorphisms are both diagonal.

Proof. Let A and B be the endomorphisms and let V be the vector space. As A is
diagonalisable, V decomposes into the direct sum of the eigenspaces Vλ of A (here, λ ∈ �
is the corresponding eigenvalue). Since A and B commute, each v ∈ Vλ satisfies

(4.35) A(Bv) = B(Av) = B(λv) = λBv, hence Bv ∈ Vλ .

Thus B defines an endomorphism Bλ of Vλ. If Bλ were non-diagonalisable, then it would
have a generalised eigenvector in Vλ and this would define a generalised eigenvector for B
inV , contradicting the fact that B is diagonalisable. Thus, Bλ is also diagonalisable, soVλ
decomposes into the direct sum of the eigenspaces of Bλ. Taking the union, over all λ, of
the corresponding eigenbases therefore results in a basis of V on which both A and B act
diagonally, as required. �

The point is therefore that the endomorphisms ad(H ), H ∈ h, may be simultaneously
diagonalised when acting on the vector space g. Taking h to be maximal among ad-
diagonalisable subalgebras just means that the eigenvalues of the ad(H ) carry the maximal
amount of information possible about g.

Because of this simultaneous diagonalisation, we have to generalise the notion of an
eigenvalue of a single endomorphism. Let e ∈ g denote a simultaneous eigenvector of the
ad(H ), H ∈ h, where h is a maximal ad-diagonalisable subalgebra of g. This means that

(4.36) [H , e] = ad(H )e = α(H )e,

where the eigenvalue α(H ) is given by some function α : h → �. Because Lie brackets
are bilinear, it follows that the function α depends linearly on H ∈ h. In other words, it is
a linear functional on h, ie. α ∈ h∗. If α , 0, then it is called a root of g.

The simultaneous eigenvectors eα corresponding to a root α ∈ h∗, ie. the non-zero
elements of g satisfying ad(H )eα = α(H )eα , are the root vectors corresponding to α .
Along with 0, they form the root space gα corresponding to the root α . We have

(4.37) g = g0 ⊕
⊕
α∈∆

gα ,
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where ∆ ⊂ h∗ denotes the set of all roots (the root system) of g and g0 is the eigenspace
corresponding to (the non-root) 0. In fact, it turns out that g0 = h (though this is not
entirely obvious). For convenience, we set gα = 0 for all α < ∆ ∪ {0}.

It is worthwhile noting at this point that the precise eigenspaces appearing in the decom-
position (4.37) obviously depend on the choice of maximal ad-diagonalisable subalgebra
h. When g is semisimple however, Proposition 4.2 may be used to show that different
choices lead to eigenspaces that are related by the action of an automorphism of g. In this
sense, (4.37) and ∆ are as independent of this choice as possible. The root system is thus
an invariant of g. Indeed, it is even a complete invariant in the following sense.

Theorem 4.6. If two complex finite-dimensional semisimple Lie algebras have isomorphic
root systems, then they are isomorphic.

We will not prove this important result, but rather regard it as a signpost to indicate that
we’re on the right track. Here, two root systems are said to be isomorphic if there is
an orthogonal linear transformation mapping one onto the other. (Here, the notion of
orthogonality is the usual one, but we’ll need to introduce an appropriate inner product on
g∗0 — see Proposition 4.15 below.)

Example 34. A Cartan subalgebra of sl(2) is given by the span sl(2)0 of h =
( 1 0

0 −1
)
. A

basis of eigenvectors of ad(h) is given by h, e =
( 0 1

0 0
)
and f =

( 0 0
1 0

)
. The eigenvalues are

0, 2 and −2, respectively. sl(2) therefore has just two roots α and −α , where α ∈ sl(2)∗0 is
defined by α(h) = 2. N

Example 35. Amaximal ad-diagonalisable subalgebra sp(4)0 ⊂ sp(4) is given by the span
of H1 = E11 − E33 and H2 = E22 − E44 (cf. Exercise 56). The roots α ∈ sp(4)∗0 are therefore
defined by the values (α(H1),α(H2)). We find the roots and root vectors to be as follows.

E14 + E23 : (1, 1) E12 − E43 : (1,−1) E13 : (2, 0) E24 : (0, 2)
E41 + E32 : (−1,−1) E21 − E34 : (−1, 1) E31 : (−2, 0) E42 : (0,−2)

We plot the root system of sp(4) in the real plane �2 ⊂ sp(4)∗0 like so:

and marvel at its symmetry and elegance. N
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Exercise 58. Complete a similar table for the roots and root vectors of sl(3) with respect
to the basis {H1 = E11−E22,H2 = E22−E33} of the Cartan subalgebra sl(3)0 established in
Example 33. Plot a picture of the roots and weep for the missing symmetry and elegance.
However, don’t give up all hope just yet. Instead, show that if you use a triangular, rather
than square, grid to plot the roots, symmetry and elegance is restored.

(To appreciate why, see Exercise 61 below.) H

We are now in a position to combine the properties of the Killing form κ with those of
the decomposition (4.37) induced from a given maximal ad-diagonalisable subalgebra g0.

Lemma 4.7.

(a) [gα , gβ ] ⊆ gα+β , for all α , β ∈ g∗0.
(b) Given α , β ∈ g∗0, we have κ(gα , gβ ) = 0 unless β = −α .
(c) If κ is non-degenerate on g, then it is also non-degenerate when restricted to g0.

Proof. Let eα ∈ gα , eβ ∈ gβ and H ∈ g0. Then, the Jacobi identity and antisymmetry give

ad(H )[eα , eβ ] = [H , [eα , eβ ]] = −[eα , [eβ ,H ]] − [eβ , [H , eα ]](4.38)

= β(H )[eα , eβ ] − α(H )[eβ , eα ] = (α + β)(H )[eα , eβ ].

This shows that [eα , eβ ] ∈ gα+β , proving a.
For b, first note that the invariance of the Killing form gives

α(H )κ(eα , eβ ) = κ([H , eα ], eβ ) = −κ([eα ,H ], eβ ) = −κ(eα , [H , eβ ])(4.39)

= −β(H )κ(eα , eβ ).

On the other hand, α + β , 0 implies that there exists H ∈ g0 such that (α + β)(H ) , 0.
For such H , the above calculation clearly requires that κ(eα , eβ ) = 0.

It follows immediately that κ(gα , g0) = 0, for all α ∈ ∆. Thus, for κ to be non-degenerate
on g, it must be non-degenerate on g0. This is c. �

Exercise 59. Let g be semisimple and let ∆ denote its root system.
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(a) Show that α ∈ ∆ if and only if −α ∈ ∆.
(b) Show that ∆ is a spanning set of g∗0. H

Now is a good time to tidy up the outstanding detail of proving that g = sp(2n) and so(n),
excepting so(2), are semisimple. Your results from Exercises 56 and 57 (should) show that
the diagonal matrices of sp(2n) and so(n) form maximal ad-diagonalisable subalgebras,
that the roots come in pairs α and −α , and that the root spaces are all 1-dimensional.
It therefore follows from Lemma 4.7 that the matrix representing the Killing form may
be block-diagonalised with one n × n block corresponding to g0 and many 2 × 2 blocks
corresponding to pairs of root vectors.

Each of these 2× 2 blocks has zeroes on the diagonals, by Lemma 4.7. The (manifestly
symmetric) Killing form will therefore be degenerate if the two off-diagonal elements are
zero. Unlike the situation for sl(n) (Exercise 53), computing these entries explicitly is not
particularly straightforward. Here is an alternative argument.

Suppose that we have already checked that the restriction of κ to g0 is non-degenerate
and that the Lie bracket [eα , e−α ] is non-zero for each pair α and −α of roots. If the Killing
form were degenerate, then one of the 2 × 2 blocks, that corresponding to eα and e−α say,
would have to be identically 0. But, these root vectors would then belong to kerκ, hence
so would [eα , e−α ] ∈ g0, by Exercise 50. However, the latter being non-zero contradicts
the non-degeneracy of κ on g0. This contradiction proves that κ is non-degenerate.

Exercise 60. Complete the proof that sp(2n) and so(n), but not so(2), are semisimple by
using your results from Exercises 56 and 57 to:

(a) Demonstrate that [eα , e−α ] , 0, for each pair of roots ±α .
(b) Compute explicitly the n × n block of κ corresponding to the diagonal matrices and

thereby show that it is invertible.

What happens to your general calculations when you restrict to so(2)? H

For semisimple Lie algebras g, we can in particular use the non-degeneracy of κ on
the Cartan subalgebra g0 (ie. Lemma 4.7c) to conveniently identify g0 with its dual. To
this end, we introduce a vector space isomorphism ι : g0 → g∗0 by specifying that for any
H ∈ g0, the linear functional ι(H ) ∈ g∗0 is defined to act on H

′ ∈ g0 by

(4.40) ι(H )(H ′) = κ(H ,H ′).

This identification also allows us to lift the Killing form to a bilinear form (·, ·) on g∗0:

(4.41) (λ, µ) = λ
(
ι−1(µ)

)
= κ(ι−1(λ), ι−1(µ)), for all λ, µ ∈ g∗0.

It is common, even in introductory textbooks, for g0 to be identified with its dual (meaning
that ι is regarded as the identity map). As this can lead to some unfortunate confusion, we
shall not do so here.
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Example 36. Recall from Example 34 that sl(2) has two roots ±α and that α(h) = 2. From
Example 31, we have ι(h)(h) = κ(h,h) = 8. Since {h} is a basis of sl(2)0, comparing
therefore gives ι(h) = 4α , ie. ι−1(α) = 1

4h. The bilinear form on sl(2)∗0 is then given by

N(4.42) ‖α ‖2 = (α ,α) = α
(
ι−1(α)

)
=

1
4
α(h) =

1
2
.

Example 37. In Exercise 60, you explicitly computed the restriction of the Killing form
of sp(4) to its Cartan subalgebra in order to show that sp(4) is semisimple. Comparing
with the trace form in the defining representation, you should see that

(4.43) κ(H ,H ′) = 6 tr(HH ′), for all H ,H ′ ∈ sp(4)0.

Referring back to Example 35, let α be the root whose eigenvalues (α(H1),α(H2)) are
(2, 0) and, similarly, let β be the root whose eigenvalues are (−1, 1). Then, the roots of
sp(4) are ±α , ±β , ±(α + β) and ±(α + 2β). We compare these eigenvalues with

(4.44)

ι(H1)(H1) = κ(H1,H1) = 6 tr(E11 − E33)
2 = 12,

ι(H1)(H2) = κ(H1,H2) = 6 tr(E11 − E33)(E22 − E44) = 0,

ι(H2)(H2) = κ(H2,H2) = 6 tr(E22 − E44)
2 = 12,

thereby concluding that α = 1
6ι(H1) and β = 1

12ι(−H1 + H2).
With this, we can compute the values taken by the bilinear form on the roots, eg.

(4.45)

‖α ‖2 = κ(ι−1(α), ι−1(α)) =
1

36
κ(H1,H1) =

1
3
,

(α , β) = κ(ι−1(α), ι−1(β)) =
1

72
κ(H1,−H1 + H2) = −

1
6
,

‖β ‖2 = κ(ι−1(β), ι−1(β)) =
1

144
κ(−H1 + H2,−H1 + H2) =

1
6
.

We can even push our luck and try to compute the angle ϕαβ between the roots α and β
using the cosine rule:

(4.46) cosϕαβ =
(α , β)

‖α ‖‖β ‖
=
−1

6√
1
3 ·

1
6

= −
1
√

2
.

We conclude that this angle should be 135◦. And indeed, this precisely matches the angle
drawn in the picture in Example 35. N

Exercise 61. Repeat the analysis of the previous example for sl(3) to show that the angles
between the roots are correctly captured by drawing the root system on a triangular grid,
as in the picture in Exercise 58. H

Exercise 62. Repeat to draw the root systems of so(4) and so(5) (with correct angles!)
using your results from Exercises 57 and 60. Notice anything? H
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Of course, we don’t (yet) knowwhether it evenmakes sense to talk about angles between
roots — there might be roots with zero norm-squared (deadly for the cosine rule) or even
negative norm-squared (not deadly but weird). However, these investigations look so
promising that surely there’s something important going on here.

4.4. Coroots

We will now show that every root (along with its negative) of a semisimple Lie algebra
g gives rise to a subalgebra isomorphic to sl(2). This observation turns out to be the
key to understanding g because it follows that we can regard it as a module for each of
these sl(2)-subalgebras, ie. we can apply our knowledge of sl(2) representation theory
(Sections 3.1 and 3.2) to constrain the possibilities for a general semisimple Lie algebra g.

Proposition 4.8. Let α be a root of a semisimple Lie algebra g. If x ∈ gα and y ∈ g−α ,
then we have

(4.47) [x ,y] = κ(x ,y)ι−1(α).

In particular, [gα , g−α ] is one-dimensional.

Proof. Take an arbitrary H ∈ g0, noting that [x ,y] ∈ g0 as well. Then,

κ(H , [x ,y]) = κ([H ,x],y) = α(H )κ(x ,y) = κ(ι−1(α),H )κ(x ,y)(4.48)

= κ(H ,κ(x ,y)ι−1(α)),

hence [x ,y] − κ(x ,y)ι−1(α) ∈ g0 is orthogonal to g0. (4.47) now follows because κ is
non-degenerate on g0, by Lemma 4.7c. The non-degeneracy of κ on gα ⊕ g−α likewise
shows that [gα , g−α ] cannot be 0 because ι−1(α) , 0 in (4.47). �

Lemma 4.9. Suppose that X , Y and Z are matrices satisfying the commutation relations
of the Heisenberg algebra (see Example 10):

(4.49) [X ,Y ] = Z and [X ,Z ] = [Y ,Z ] = 0.

Then, Z is nilpotent.

Proof. Given such matricesX , Y andZ , it is clear that trZ = tr(XY −YX ) = 0 by cyclicity.
However, combining cyclicity with the fact that Z commutes with both X and Y gives

(4.50) trZk = tr
(
(XY − YX )Zk−1

)
= tr(XYZk−1) − tr(XZk−1Y ) = 0,

for all k ∈ �>1. It follows that summing any positive-integer power of the eigenvalues of
Z will always give 0, hence each eigenvalue must be in fact 0. �
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Exercise 63. Justify the statement in the last line of the proof of Lemma 4.9 as follows.
Suppose thatZ is not nilpotent, so that it has somedistinct non-zero eigenvaluesλ1, . . . , λn

whose (algebraic) multiplicities arem1, . . . ,mn, respectively.

(a) Write the equations trZk = 0, for suitable k , in terms of the eigenvalues and multi-
plicities, thereby showing that they may be put in the form

(4.51) Λm = 0,

where Λ is an n × n matrix of powers of eigenvalues, m is an n × 1 column vector of
multiplicities and 0 is the n × 1 column vector of zeroes.

(b) Show that Λ is invertible. [Hint: relate it to the n × n Vandermonde determinant.]
(c) Explain why this justifies the statement in the proof. H

Proposition 4.10. Every root α of a semisimple Lie algebra g satisfies ‖α ‖2 , 0.

Proof. Suppose that some α ∈ ∆ indeed has ‖α ‖2 = (α ,α) = 0. Then, α
(
ι−1(α)

)
= 0 and

so [ι−1(α), g±α ] = 0. By non-degeneracy of κ, we may choose x ∈ gα and y ∈ g−α such
that κ(x ,y) , 0. Set z = κ(x ,y)ι−1(α) ∈ g0 and note that this is non-zero. Then, we have

(4.52) [x ,y] = z and [x , z] = [y, z] = 0, .

by (4.47). Take X = ad(x), Y = ad(y) and Z = ad(z). As ad is a finite-dimensional
representation of g (Example 21),X ,Y andZ are linear transformations satisfying (4.49). Z
is therefore nilpotent, by Lemma 4.9. However, z ∈ g0 is automatically ad-diagonalisable,
ie. Z is diagonalisable. The only possibility is then that Z = 0. But, ad(z) = 0 implies that
z = 0 because g has zero centre (otherwise the centre would be a non-semisimple ideal).
However, this contradicts the fact that we chose z to be non-zero. �

Note that this rules out roots with norm-squared equal to zero. We can therefore sensibly
talk about the angle between two roots, although it isn’t clear yet if this angle will have
all the properties we might expect based on our experience with flat euclidean space. We
will of course come back to this point soon.

Theorem 4.11. Let g be a semisimple Lie algebra. Given any non-zero eα ∈ gα , choose
fα ∈ g−α so that

(4.53) κ(eα , fα ) =
2
‖α ‖2

and set

(4.54) hα =
2ι−1(α)

‖α ‖2
∈ g0.

Then, there is an injective homomorphism iα : sl(2) ↪→ g given by

(4.55) e 7→ eα , f 7→ fα , h 7→ hα .



58 D RIDOUT

In other words, span{eα ,hα , fα } is a subalgebra of g isomorphic to sl(2).

Proof. We first note that the choice of fα is possible because of Proposition 4.10 and
the non-degeneracy of κ. Next, note that defining hα as above gives [eα , fα ] = hα , by
Proposition 4.8. It therefore only remains to check the Lie bracket of hα with the root
vectors, eg.

�(4.56) [hα , eα ] =
2
‖α ‖2

[ι−1(α), eα ] =
2
‖α ‖2

α
(
ι−1(α)

)
eα = 2eα .

The element hα ∈ g0 defined in (4.54) is called the coroot associated to the root α ∈ ∆.
A popular alternative notation for hα is α∨ and so we shall denote the set of coroots (the
coroot system) of g by ∆∨. One has to be careful with notation however. For example, it
is important to note that even if α , β and α + β are all roots, we need not have

(4.57) (α + β)∨ = α∨ + β∨.

We shall see an example shortly. However, we do have (−α)∨ = −α∨:

(4.58) (−α)∨ =
2ι−1(−α)

‖−α ‖2
= −

2ι−1(α)

‖α ‖2
= −α∨.

Example 38. Recall from Example 36 that the root α of sl(2) satisfying α(h) = 2 has
ι−1(α) = 1

4h and ‖α ‖2 = 1
2 . It follows that the corresponding coroot is

N(4.59) α∨ =
2ι−1(α)

‖α ‖2
=

2 · 1
4h

1
2
= h.

Example 39. Using the sp(4) data of Example 37, we easily compute the following four
coroots directly from the definition:

(4.60) α∨ = H1, β∨ = −H1 + H2, (α + β)
∨ = H1 + H2 and (α + 2β)∨ = H2.

Note that taking coroots seems to swap the relative norms-squared: sp(4) has long roots
(whose norm-squared is 1

3 ) and short roots (whose norm-squared is 1
6 ), but the corre-

sponding coroots are short and long, respectively, as measured by the Killing form.
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Note also that this example gives counterexamples to (4.57). N

Exercise 64. Use the results of Exercises 61 and 62 to draw the coroot systems of sl(3),
so(4) and so(5). H

We close out this section by noting that it is possible to do something about the mildly
annoying fact that the numerology encountered in the above examples involves “large”
numbers. By way of example, take sp(4) where we computed that κ(Hi ,Hj) = 12δij . The
culprit here is obviously the proportionality factor of 6 in (4.43) between the trace in the
adjoint representation and the trace in the defining representation (cf. Exercise 54).

Obviously, the important properties of the Killing form, namely that it is symmetric,
bilinear and invariant, will not change if we rescale it by a non-zero factor. If g is
semisimple, then such a rescaling will not affect its non-degeneracy either. However, such
a rescaling will result in a rescaling of the isomorphism ι and hence a rescaling of the
bilinear form (·, ·) on g∗0.

Exercise 65. Show that rescaling κ by a factor of a ∈ �×, ie. setting κ̃ = aκ, leads to
rescaling ι by a but (·, ·) by a−1. What happens to the coroots? H

The definitions (4.53) and (4.54) suggest that it would be natural to rescale the Killing
form so that the factors 2

‖α ‖2
, α ∈ ∆, are close to 1. Indeed, the most commonly observed

convention used in the literature sets

(4.61) ‖α ‖2 = 2,

where α is any long root of g (meaning one whose norm-squared is maximal among all
roots). From Examples 36 and 37, we see that this would correspond to rescaling κ by
1
4 , for sl(2), and by 1

6 , for sp(4). Note that in both cases, this rescaled Killing form is
nothing more than the trace form in the defining representation, lending further weight to
the naturality of this convention.

4.5. The geometry of root systems

By Theorem 4.11, each root α of the semisimple Lie algebra g gives rise to an sl(2)-
subalgebra of g. If iα : sl(2) ↪→ g denotes the inclusion whose image is this subalgebra,
then g becomes a finite-dimensional sl(2)-module under

(4.62) x · y = [iα (x),y], for all x ∈ sl(2) and y ∈ g.

Equivalently, the sl(2)-representation is obtained by composing iα and the adjoint repre-
sentation of g:

(4.63) sl(2)
iα
−→ g

ad
−→ gl(g).
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Of course, it is very common to omit all explicit references to the inclusions iα . Either
way, the point is that we understand the finite-dimensional representation theory of sl(2)
extremely well (Sections 3.1 and 3.2). It is now time to put that understanding to use.

First, recall that g being a finite-dimensional sl(2)-module means that it is isomor-
phic to a direct sum of finite-dimensional irreducible sl(2)-modules, by Weyl’s theorem
(Theorem 3.5). Second, every one of these finite-dimensional irreducible sl(2)-modules
is isomorphic to some Lλ, with λ ∈ �>0, by Theorem 3.1. Third, the eigenvalues of
h ∈ sl(2) on any given Lλ are always integers, being either all even or all odd according
as to the parity of λ (Section 3.1). On the other hand, Theorem 4.11 says that iα sends h
to the coroot hα = α∨ ∈ g. We therefore conclude that the eigenvalues of ad(hα ) on g are
also integers.

We’re going to have to work harder to get more information about these integers, but it
will be worth it. We split the bulk of the work up into the following two propositions.

Proposition 4.12. Let α be a root of a semisimple Lie algebra g. Then, dim gα = 1.
Moreover, kα is not a root of g for any k ∈ � except k = ±1.

Proof. Consider first the subspace gkα , where k ∈ �. If it is non-zero, then it is an
eigenspace of ad(hα ) corresponding to the eigenvalue

(4.64) kα(hα ) =
2k
‖α ‖2

α
(
ι−1(α)

)
= 2k .

As this eigenvalue must be an integer, it follows that gkα = 0 unless k ∈ 1
2�.

Note that the adjoint action of eα maps gkα into g(k+1)α :

ad(H ) ad(eα ) gkα =
(
ad(eα ) ad(H ) + ad([H , eα ])

)
gkα(4.65)

= ad(eα )
(
ad(H ) + α(H )

)
gkα

= (k + 1)α(H ) ad(eα ) gkα .

Similarly, the adjoint action of fα maps gkα into g(k−1)α . The subspace

(4.66) V =
⊕
k∈�

gkα

of g is therefore a module of the sl(2) subalgebra spanned by eα , hα and fα . It therefore
decomposes as a direct sum of irreducible sl(2)-modules Lλ. Because only integer k were
used in its construction, only the Lλ with λ ∈ 2�>0 may appear in this decomposition.

There are some easily found submodules of V . First, we have a copy of the adjoint
sl(2)-module L2 spanned by eα ∈ gα , hα ∈ g0 and fα ∈ g−α . Second, we have the trivial
sl(2)-module L0 spanned by any H ∈ g0 that is orthogonal to hα (with respect to the
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Killing form). That this span is indeed a module follows from ad(hα )H = [hα ,H ] = 0,

(4.67) ad(fα )H = [H , fα ] = α(H )fα = κ(ι−1(α),H )fα =
‖α ‖2

2
κ(hα ,H )fα = 0

and the obviously similar calculation with eα instead of fα . Because κ is non-degenerate,
the orthogonal complement of hα in g0 is (r − 1)-dimensional, where r = rank g. We
therefore get r − 1 copies of the trivial module L0.

These easy observations establish that L2 ⊕ (r − 1)L0 ⊆ V . However, if V had any
other irreducible direct summand Lλ that we had not already found, then it would have
an ad(hα )-eigenspace corresponding to eigenvalue 0 (Section 3.1) because λ ∈ 2�>0.
However, the dimension of this eigenspace in V is r , hence is already accounted for by
L2 and the r − 1 copies of L0. We therefore conclude that V has no other irreducible
submodules:

(4.68) V ' L2 ⊕ (r − 1)L0.

In other words, this establishes that gα = span{eα }, g−α = span{ fα } and gkα = 0 for any
integer k except 1, −1 and 0. In particular, this proves that dim gα = 1 for all α ∈ ∆.

It only remains to show that gkα = 0 for all k ∈ � + 1
2 . Here, the essential point is that

the above argument shows, in particular, that “twice a root is never a root”. To see how to
exploit this mantra, form the sl(2)-submodule

(4.69) W =
⊕
k∈�+ 1

2

gkα

whose direct sumdecomposition only involves theLλ with λ ∈ 2�>0+1. FromSection 3.1,
we know that any such Lλ will have an ad(hα )-eigenspace of eigenvalue 1. IfW were not
zero, then we would therefore have gα/2 , 0. But then, 1

2α would be a root along with α ,
contradicting our mantra. The only way out is to conclude thatW = 0. �

Proposition 4.13. Let α and β , ±α be roots of a semisimple Lie algebra g. Then:

(a) β(hα ) ∈ � and β − β(hα )α is a root of g.
(b) There exist p,q ∈ �>0 with p − q = β(hα ) such that β + kα is a root of g if and only if

k is an integer satisfying −p 6 k 6 q.
(c) If α + β is a root, then [eα , eβ ] = Nαβeα+β for some scalar Nαβ , 0.

Proof. This time, we consider the subspace

(4.70) Vβ =
⊕
k∈�

gβ+kα

of g, noting that this is clearly a finite-dimensional sl(2)-submodule for the subalgebra
spanned by eα , hα and fα . The ad(hα )-eigenvalues of Vβ are thus integers. In particular,
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the eigenvalue of gβ+kα is β(hα ) + 2k , assuming that gβ+kα , 0. As β ∈ ∆, k = 0 gives an
example in which this eigenvalue must be an integer: β(hα ) ∈ �.

Since Proposition 4.12 ensures that β + kα , 0, we see that gβ+kα is one-dimensional
if β + kα ∈ ∆ (and is zero-dimensional otherwise). Furthermore, we have seen that the
ad(hα )-eigenvalues of Vβ all differ by even integers. The sl(2)-module Vβ must therefore
be irreducible. It must then have a minimal ad(hα )-eigenvalue (β −pα)(hα ), with p ∈ �>0,
and a maximal one (β + qα)(hα ), with q ∈ �>0, satisfying

(4.71) (β − pα)(hα ) = −(β + qα)(hα ) ⇐⇒ β(hα ) = p − q.

Moreover, each of the “intermediate” eigenvalues is also present, hence β + kα is a root
for all k = −p, . . . ,q. Since −p 6 −p + q 6 q, we have the special case

(4.72) β − β(hα )α = β + (−p + q)α ∈ ∆.

We didn’t actually need the irreducibility of Vβ above, but we’ll use it for the final part.
So suppose that [eα , eβ ] = 0. Then, eβ is annihilated by the action of ad(eα ) so it must be
the ad(hα )-eigenvector of maximal eigenvalue in the sl(2)-moduleVβ , because the latter is
irreducible. However, this is a contradiction if α + β ∈ ∆ because then eα+β ∈ gβ+α ⊂ Vβ

and the ad(hα )-eigenvalue of eα+β is clearly strictly greater than that of eβ . �

We remark that a collection of roots of the form {β + kα : k = −p, . . . ,q} ⊆ ∆ is
sometimes called a root string of g. As noted in the proof of Proposition 4.13, they
correspond to irreducible sl(2)-submodules of g.

Example 40. Take g = sp(4) and recall the roots α and β introduced in Example 37. Since
β(hα ) = β(H1) = −1 (Example 39), Proposition 4.13 says that β − β(hα )α = α + β is also
a root of sp(4) (which is true). We therefore have a root string {β, β + α }. We might call
it the α-root string through β (and β + α). Similarly, the α-root string through the root
α + 2β is just {α + 2β} because (α + 2β)(hα ) = 0.

It is worthwhile to also look at examples of β-root strings. In particular, α(hβ ) =
α(−H1 + H2) = −2, so α + 2β ∈ ∆ and the β-root string through α is {α ,α + β,α + 2β}.
However, we’ve been cheating slightly in these illustrations, because we don’t actually
know that these root strings aren’t in fact longer than we’ve deduced. This is exemplified
by considering the β-root string through α + β : as (α + β)(hβ ) = 0, we would naturally
conclude that the string is just {α + β}. However, the previous case shows that the correct
root string is in fact longer.
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So there’s still some work to be done, what a surprise. Until then, we can amuse
ourselves by drawing pretty pictures of root strings (in blue) of sp(4).

α

β

α

β

The node at the origin here is meant to remind you that even though 0 is not a root, sp(4)0 is
not zero (and is in fact two-dimensional). The blue lines through the origins here are not,
strictly speaking, root strings in the sense of Proposition 4.13, ie. corresponding to some
Vγ . But, we may regard them as effective root strings in the sense that they correspond to
the submodules V analysed in Proposition 4.12. N

Proposition 4.13 shows that β(α∨) ∈ �, for all roots α and β . More is true. Because we
now know that root spaces are one-dimensional (Proposition 4.12), we have

(4.73) g = g0 ⊕
⊕
γ∈∆

�eγ .

With no multiplicities to worry about, the Killing form is easily evaluated on the Cartan
subalgebra g0. In particular, we see that

(4.74) κ(α∨, β∨) =
∑
γ∈∆

γ (α∨)γ (β∨)

is an integer. It follows that

(4.75) ‖α ‖2 = κ(ι−1(α), ι−1(α)) =
‖α ‖4

4
κ(α∨,α∨) ⇒ ‖α ‖2 =

4
κ(α∨,α∨)

,

a rational number. Moreover,

(4.76) (α , β) = κ(ι−1(α), ι−1(β)) =
‖α ‖2‖β ‖2

4
κ(α∨, β∨) =

4κ(α∨, β∨)
κ(α∨,α∨)κ(β∨, β∨)

is also rational, for any α , β ∈ ∆.

This rationality goes even further. Recall that the root system ∆ is a spanning set for g∗0
(Exercise 59). We may therefore choose a basis Π = {α1, . . . ,αr } of g∗0, where r = rank g,
in which each of the basis elements is a root.

Lemma 4.14. Every root is a rational linear combination of the roots in Π.
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Proof. Expand a root β ∈ ∆ in this basis. The result is

(4.77) β =
r∑
j=1

bjαj ⇒ (αi , β) =
r∑
j=1

bj(αi ,αj),

where i is any integer from 1 to r and the bj are (a priori) complex numbers. However, the
matrix form of these equations is

(4.78)
©­­­«
(α1, β)
...

(αr , β)

ª®®®¬ =
©­­­«
(α1,α1) · · · (α1,αr )
...

. . .
...

(αr ,α1) · · · (αr ,αr )

ª®®®¬
©­­­«
b1
...

br

ª®®®¬ .
The matrix here is precisely the representing matrix, with respect to the basis Π, for the
bilinear form (·, ·). As this form is non-degenerate, the matrix is invertible. Moreover, the
entries of this matrix are rational and so the entries of the inverse matrix will be rational
as well (by the row-reduction algorithm). The bi are thus rational linear combinations of
the (αi , β), hence are rational themselves. �

This then motivates the introduction of the rational vector space

(4.79) R = span� ∆ ⊂ g
∗
0.

By Lemma 4.14, this vector space would not change if we replaced ∆ byΠ in the definition.
In particular, dim� R = r = rank g.

Of course, we could also take the real span instead of the rational one. Note that this
real space R ⊗� � is the ambient space of the root diagrams that we have been drawing
throughout. The next result shows that our discussion of lengths and angles in these
diagrams is perfectly justified.

Proposition 4.15. R is a rational inner product space, ie. the non-degenerate invariant
symmetric bilinear form (·, ·) is positive-definite on R.

Proof. Given β ∈ R ⊂ g∗0, one has

(4.80) ‖β ‖2 = κ(ι−1(β), ι−1(β)) =
∑
α∈∆

α(ι−1(β))2 =
∑
α∈∆

(α , β)2,

as in (4.74). Since (α , β) ∈ �, for all α ∈ ∆, this proves that ‖β ‖2 is non-negative.
Moreover, ‖β ‖2 = 0 can only be achieved if (α , β) = 0 for all α ∈ ∆. As the roots form a
basis of g∗0, β is then in the kernel of (·, ·). But, this form is non-degenerate, so β = 0. �

Recall that the angle ϕαβ between two non-zero elements α , β ∈ R is determined by the
cosine rule:

(4.81) cosϕαβ =
(α , β)

‖α ‖‖β ‖
.
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The fact that β(α∨) ∈ � (Proposition 4.13) now leads to a very strong constraint on the
angle ϕαβ . First, note that

(4.82) β(α∨) =
2
‖α ‖2

β
(
ι−1(α)

)
=

2(β ,α)
‖α ‖2

=
2‖β ‖
‖α ‖

cosϕαβ .

Multiplying by α(β∨) therefore gives

(4.83) α(β∨)β(α∨) = 4 cos2 ϕαβ .

The left-hand side is an integer, while the right-hand side is real number lying between 0
and 4. We conclude that both sides may only take values in the finite set {0, 1, 2, 3, 4}.

Proposition 4.16. Let α and β be roots of a semisimple Lie algebra g. Then, up to
exchanging α and β , one of the following possibilities must occur.

α(β∨) 0 1 −1 1 −1 1 −1 2 −2
β(α∨) 0 1 −1 2 −2 3 −3 2 −2
ϕαβ 90◦ 60◦ 120◦ 45◦ 135◦ 30◦ 150◦ 0◦ 180◦

‖β ‖2/‖α ‖2 – 1 1 2 2 3 3 1 1

Exercise 66. Prove Proposition 4.16, paying close attention to any missing cases. H

Exercise 67. Let α and β , ±α be roots of a semisimple Lie algebra g. Use Proposi-
tions 4.13 and 4.16 to prove the following statements:

(a) If the angle between α and β is obtuse, ie. ϕαβ > 90◦, then α + β is a root.
(b) If the angle between α and β is acute, ie. ϕαβ < 90◦, then α − β is a root. H

Recall from Exercise 51 that the simple ideals gi of a semisimple Lie algebra g are
orthogonal with respect to the Killing form: κ(gi , gj) = 0 if i , j. This will then
obviously hold for the Cartan subalgebras (gi)0 as well, hence their duals will be orthogonal
with respect to (·, ·). In particular, roots coming from different simple ideals will be
automatically orthogonal.

There is a converse to this conclusion. Suppose that a root system ∆ is the (necessarily
disjoint) union of two non-empty subsets of roots ∆1 and ∆2 whose elements are mutually
orthogonal: (∆1,∆2) = 0. Then, α + β < ∆ for all α ∈ ∆1 and β ∈ ∆2 because this sum is
not orthogonal to ∆1 nor to ∆2. It follows that eα and eβ commute. It is easy to check that
hα and eβ likewise commute, as do eα and hβ . Moreover, the hα with α ∈ ∆1 and the hβ
with β ∈ ∆2 are orthogonal with respect to κ, so their spans have zero intersection. This
proves that g admits the following (non-trivial) decomposition into ideals:

(4.84) g = span{eα ,hα : α ∈ ∆1} ⊕ span{eβ ,hβ : β ∈ ∆2}.

In other words, g is not simple.
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This motivates the definition that a root system ∆ is reducible if it may be written as the
union of two non-empty subsets of roots ∆1 and ∆2 satisfying (∆1,∆2) = 0. If ∆ cannot
be written in such a fashion, then it is irreducible. Furthermore, the above argument
establishes the following result.

Proposition 4.17. A semisimple Lie algebra is simple if and only if its root system is
irreducible.

We know that sl(2) is simple (Example 17) but, up to now, we haven’t established the
simplicity of any other examples. With this new tool however, it is easy to prove simplicity.

Exercise 68. Use Proposition 4.17 and the explicit descriptions of their root systems to
decide which of sl(3), sp(4), so(4) and so(5) are simple Lie algebras. H

Exercise 69. Show that there can be at most two different lengths among the roots of a
simple Lie algebra. H

4.6. Simple roots

As α ∈ ∆ implies that −α ∈ ∆ (Exercise 59), we can partition the root system into sets
of positive and negative roots:

(4.85) ∆ = ∆+ ∪ ∆−.

A natural way of doing this is to choose a codimension-1 hyperplane H ⊂ R through the
origin and declare that the roots on one side of H are positive whilst those on the other
side are negative. Better yet, we may choose η ∈ R normal to H and then define a root
α ∈ ∆ to be positive or negative according to the sign of (η,α). For this to work, we have
to ensure that no root lies in H . However, this is easy to do as the set of roots is finite.
Here are some examples of partitions into positive and negative roots.

∆− ∆+
H

sl(2)

∆+

∆−
H

sl(3)

∆+

∆−
H

sp(4)

Of course, these are not the only such partitions and so the splitting of the root system into
positive and negative roots depends on a choice. However, just as with the choice of Cartan
subalgebra, it turns out that any two choices of partition are related by an automorphism
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of the root system and so the choice doesn’t really matter at all. Here, an automorphism
of a root system ∆ is just an invertible linear map that preserves ∆.

Fix a choice of positive roots. An important concept now arises: that of a positive root
that cannot be expressed as the sum of two positive roots. Such a root is said to be simple.
In a sense, simple roots are the “smallest” positive roots — they are the closest positive
roots to the partitioning hyperplane H . The utility of this concept stems from the fact
that all positive roots must be expressible as a linear combination of simple roots with
non-negative integer coefficients!

Lemma 4.18. The angle between two (different) simple roots is never acute. Equivalently,
any two simple roots α1 and α2 , α1 satisfy (α1,α2) 6 0.

Proof. If the angle ϕα1α2 were acute, then α1 − α2 would be a root by Exercise 67. If
this root were positive, then α1 = (α1 − α2) + α2 would be a sum of two positive roots.
However, if this root were negative, then α2 = −(α1 −α2)+α1 would likewise be a sum of
two positive roots. Both possibilities contradict the fact that α1 and α2 are simple. �

Proposition 4.19. Let Π = {α1, . . . ,αr } be a maximal set of simple roots of a semisimple
Lie algebra g. Then, Π is a basis of R, so r = rank g, and every positive root β ∈ ∆+ has
the form

(4.86) β =
r∑

i=1
niαi , for some ni ∈ �>0.

Proof. We first show that every positive root is an �>0-linear combination of roots in Π.
Suppose that there are positive roots that cannot be expressed as an�>0-linear combination
of roots in Π. Then, there is one such, α say, for which (η,α) is minimal, where η is any
fixed normal to the partitioning hyperplane H . Now obviously α is not in Π, so it is not
simple (Π is a maximal set of simple roots). We therefore have α = β1 + β2 for some
β1, β2 ∈ ∆+. As (η, βi) > 0, it follows that (η, βi) < (η,α), for i = 1, 2. The minimality
of α now means that both β1 and β2 are �>0-linear combination of roots in Π. But, this
means α is too. This contradiction means that no such α exists, hence all positive roots
are �>0-linear combinations of roots in Π.

Since the roots certainly span R, this shows that Π is also a spanning set. It remains to
show linear independence. So, suppose that there exist ai ∈ � such that

(4.87)
r∑

i=1
aiαi = 0.
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Split this into two sums, onewith strictly positive coefficients and onewith strictly negative
ones. We then have

(4.88)
∑

i : ai>0
aiαi =

∑
j : aj<0

(−aj)αj .

Call the common value of these sums β . Now, Lemma 4.18 forces (αi ,αj) 6 0, because
we must have i , j, hence

(4.89) ‖β ‖2 =
∑

i : ai>0

∑
j : aj<0

ai(−aj)(αi ,αj) 6 0.

By positive-definiteness (Proposition 4.15), ‖β ‖2 = 0 and so β = 0. We therefore find that

(4.90)
∑

i : ai>0
ai(η,αi) = 0 and

∑
j : aj<0

(−aj)(η,αj) = 0,

as they are both secretly just (η, β). But, (η,αi) > 0 because simple roots are positive. So
the above equations are impossible if there are any ai > 0 and any ai < 0, respectively.
The conclusion is that in fact all ai = 0 and that the αi are linearly independent. �

Example 41. Throughout, we have been illustrating the general theory with the classical
Lie algebras sl(n), so(n) and sp(2n). The Cartan subalgebra was always chosen to consist
of diagonal matrices and the root vectors then naturally split into two subsets under the
transpose operation (in the defining representation). This gives us a natural choice of
positive and negative roots, hence simple roots.

We tabulate the results as follows.

(a) g = sl(r + 1):
Cartan basis: Hk = Ekk − Ek+1k+1, for 1 6 k 6 r .
Simple root vectors: Ei i+1, for 1 6 i 6 r .
Positive root vectors: Eij , for 1 6 i < j 6 r + 1.
ad(Hk)-eigenvalues: δik − δjk − δi k+1 + δj k+1, for 1 6 i < j 6 r + 1 and 1 6 k 6 r .

(b) g = so(2r + 1):
Cartan basis: Hk = Ekk − Er+k r+k , for 1 6 k 6 r .
Simple root vectors: • Ei i+1 − Er+i+1 r+i , for 1 6 i 6 r − 1.

• Er 2r+1 − E2r+1 2r .
Positive root vectors: • Eij − Er+j r+i , for 1 6 i < j 6 r .

• Ei r+j − Ej r+i , for 1 6 i < j 6 r .
• Ei 2r+1 − E2r+1 r+i , for 1 6 i 6 r .

ad(Hk)-eigenvalues: • δik − δjk , for 1 6 i < j 6 r and 1 6 k 6 r .
• δik + δjk , for 1 6 i < j 6 r and 1 6 k 6 r .
• δik , for 1 6 i 6 r and 1 6 k 6 r .
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(c) g = sp(2r ):
Cartan basis: Hk = Ekk − Er+k r+k , for 1 6 k 6 r .
Simple root vectors: • Ei i+1 − Er+i+1 r+i , for 1 6 i 6 r − 1.

• Er 2r .
Positive root vectors: • Eij − Er+j r+i , for 1 6 i < j 6 r .

• Ei r+j + Ej r+i , for 1 6 i 6 j 6 r .

ad(Hk)-eigenvalues: • δik − δjk , for 1 6 i < j 6 r and 1 6 k 6 r .
• δik + δjk , for 1 6 i 6 j 6 r and 1 6 k 6 r .

(d) g = so(2r ):
Cartan basis: Hk = Ekk − Er+k r+k , for 1 6 k 6 r .
Simple root vectors: • Ei i+1 − Er+i+1 r+i , for 1 6 i 6 r − 1.

• Er−1 2r − Er 2r−1.
Positive root vectors: • Eij − Er+j r+i , for 1 6 i < j 6 r .

• Ei r+j − Ej r+i , for 1 6 i < j 6 r .

ad(Hk)-eigenvalues: • δik − δjk , for 1 6 i < j 6 r and 1 6 k 6 r .
• δik + δjk , for 1 6 i < j 6 r and 1 6 k 6 r . N

Exercise 70. A natural basis of the Cartan subalgebra is afforded by the simple coroots,
ie. the coroots α∨i , i = 1, . . . , rank g.

(a) Why do the simple coroots form a basis of g0?
(b) Show that the transpose of any of the positive root vectors eα given in Example 41

for the classical Lie algebras is proportional to the negative root vector fα .
(c) For each of the classical Lie algebras, compute this constant of proportionality for

every simple root and thereby deduce formulae for the simple coroots in terms of the
Cartan basis elements Hk of Example 41. H

Exercise 71. Draw, in R ' �3, the root systems of sl(4), sp(6) and so(7) (making sure that
lengths and angles are roughly correct). [This is a good exercise to do with a computer,
especially if you can rotate the drawing around!] H

4.7. Cartan matrices
Now that we know what simple roots are, we can define the Cartan matrix of g. Given

a set of simple roots Π = {α1, . . . ,αr }, r = rank g, this is the r × r matrix A whose entries
are the following integers:

(4.91) Aij = αj(α
∨
i ) =

2(αi ,αj)
‖αi ‖2

, for all i, j = 1, . . . , r .

Some people find it more natural to swap i and j in this definition (ie. their Cartan matrix
is the transpose of ours). The convention used above was chosen so that

(4.92) [hαi , eα j ] = Aijeα j .
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Note that the Cartan matrix is independent of the normalisation used for the Killing form!

Example 42.

(a) sl(2) has rank 1, with Π = {α}, eα = e = E12 and α∨ = h (Example 38). Since
α(h) = 2, we have

A =
(
2
)
. α

(b) sl(3) has rank 2, with Π = {α1,α2}, eα1 = E12, eα2 = E23, α∨1 = H1 and α∨2 = H2 (in
the conventions of Example 41 and Exercise 70). The Cartan matrix is thus

A =

(
2 −1
−1 2

)
. α1

α2

(c) sp(4) has rank 2, with Π = {α1,α2}, eα1 = E12 − E43, eα2 = E24, α∨1 = H1 − H2 and
α∨2 = H2 (in the conventions of Example 41 and Exercise 70). We therefore get

A =

(
2 −2
−1 2

)
.

α2

α1

N

Exercise 72. Use Example 41 and Exercise 70 to show that the Cartan matrices of sl(r+1),
r > 2; so(2r + 1), r > 3; sp(2r ), r > 2; and so(2r ), r > 4, are given by

(4.93)

Asl(r+1) =

©­­­­­­­­­­­­«

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

ª®®®®®®®®®®®®¬
, Aso(2r+1) =

©­­­­­­­­­­­­«

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −2 2

ª®®®®®®®®®®®®¬
,

Asp(2r ) =

©­­­­­­­­­­­­«

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −2
0 0 0 · · · 0 −1 2

ª®®®®®®®®®®®®¬
, Aso(2r ) =

©­­­­­­­­­­­­«

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...
...
...
. . .

...
...
...

0 0 0 · · · 2 −1 −1
0 0 0 · · · −1 2 0
0 0 0 · · · −1 0 2

ª®®®®®®®®®®®®¬
.

What are the Cartan matrices of so(4), so(5) and so(6). H
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Exercise 73. For sl(3), sp(4), so(4) and so(5), choose a different hyperplane (to define
a different set of simple roots) and show that the Cartan matrix doesn’t change (except
perhaps for a reordering of its rows and columns). H

Indeed, up to a reordering of the rows and columns, ie. a permutation of the simple
roots, the Cartan matrix is independent of the choice of hyperplane. It is an invariant of
the semisimple Lie algebra. Better yet, it is a complete invariant.

Theorem 4.20. If two complex finite-dimensional semisimple Lie algebras have the same
Cartan matrix, up to permuting the simple roots, then they are isomorphic.

We shall not prove this important result. Instead, we shall show how one can recover the
root system ∆ of a semisimple Lie algebra g from its Cartan matrix A. Knowing that A
determines ∆ makes it plausible that it also determines g, up to isomorphism.

First, it is clearly sufficient to determine the positive roots∆+ from a setΠ = {α1, . . . ,αr }

of simple roots. About the latter, we only know the Cartan matrix entries Aij = αj(α
∨
i ).

However, this information immediately tells us the angle between every pair of simple
roots and their relative lengths, by Proposition 4.16. So, choose a simple root αi ∈ Π

and a positive root β , αi , the latter being known explicitly as a linear combination of
simple roots. The key here is Proposition 4.13 which says that β + kαi ∈ ∆+ if and only if
−p 6 k 6 q, where p,q ∈ �>0 satisfy p − q = β(α∨i ). The point is that we can determine
p, and thus q, if we know all the positive roots that are “lower” than β . This ordering on
∆+ is given by the height function which assigns to

(4.94) β =
r∑

i=1
miαi , the positive integer

r∑
i=1

mi .

Rather than try to explain this abstractly, we illustrate the procedure with two examples.

Example 43. The Cartan matrix A of sp(4) was given in Example 42c. With the simple
roots α1 and α2, we know that α1 + kα2 is a root for k = 0 but not for k = −1. In the
language of Proposition 4.13, this tells us that p = 0, hence q = −α1(α

∨
2 ) = −A21 = 1.

That is, α1 + α2 is a root, but α1 + kα2 is not a root for k > 2.
We can also consider α2 + kα1, again noting that this is a root for k = 0 but not for

k = −1. With p identified as 0, we now get q = −α2(α
∨
1 ) = −A12 = 2, hence we conclude

that α2 + α1 and α2 + 2α1 are roots while α2 + kα1 is not if k > 3.
The next step would be to consider whether there are new roots to find by considering

Proposition 4.13 with α a simple root and β a root of height 2, ie. β = α1+α2. This doesn’t
lead to any new roots, so we try the root of height 3: β = 2α1 +α2. This also gives no new
roots. We have therefore found all the positive roots of sp(4). N
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Example 44. The Cartan matrix of so(7) is

(4.95) A =
©­­«

2 −1 0
−1 2 −1
0 −2 2

ª®®¬ .
Again, taking i , j, we see that αj + kαi ∈ ∆ for k = 0, but not for k = −1, hence p = 0
and q = −Aij . In this way, we learn that α1 + α2, α2 + α3 and α2 + 2α3 are roots and that
α1 + α3 is not.

Considering β + kαi , where β is one of the height-2 roots already found, we conclude
that α1 + α2 + α3 and α1 + α2 + 2α3 are roots. For example, β = α1 + α2 and i = 3 give
p = 0, hence

(4.96) q = −(α1 + α2)(α
∨
3 ) = −A31 − A32 = 2.

Repeating with β a height-3 root gives no new roots, but the height-4 root α1 + α2 + 2α3

with i = 2 yields p = 0 (since α1 + 2α3 < ∆), hence

(4.97) q = −(α1 + α2 + 2α3)(α
∨
2 ) = −A21 − A22 − 2A23 = 1.

Thus, α1 + 2α2 + 2α3 ∈ ∆. One can check exhaustively that this is the last root to find.
Alternatively, one can note that we have found 9 positive roots and that this must be all by
dimension counting:

N(4.98) |∆+ | =
dim g − dim g0

2
=

21 − 3
2
= 9.

Exercise 74. Determine the root systems of sl(4) and so(8) from their Cartanmatrices. H

Theorem 4.20 reduces the classification of (complex finite-dimensional) semisimple
Lie algebras to the classification of Cartan matrices (up to permutations). These matrices
have the following properties.

Proposition 4.21. The Cartan matrix A of a semisimple Lie algebra g satisfies:

(a) Aii = 2.
(b) Aij ∈ {0,−1,−2,−3}, for all i , j.
(c) Aij < −1 implies that Aji = −1.
(d) Aij = 0 if and only if Aji = 0.

Moreover, let S ⊆ {1, . . . , r } be non-empty (with r = rank g) and let AS denote the |S | × |S |
matrix obtained from A by removing, for every i < S , the i-th row and column. Then,
det AS > 0.

Proof. a follows immediately from the definition (4.91). b likewise follows from the
definition by combining Propositions 4.15 and 4.16 with Lemma 4.18. c follows from
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the table in Proposition 4.16 and a. d is also an easy consequence of the definition and
Proposition 4.10:

(4.99) Aji =
2(αj ,αi)
‖αj ‖2

=
‖αi ‖

2

‖αj ‖2
2(αi ,αj)
‖αi ‖2

=
‖αi ‖

2

‖αj ‖2
Aij .

It remains to establish det AS > 0 for all non-empty S . Let RS be the subspace of R spanned
by the αi with i ∈ S . The key is to note that the |S | × |S | matrix BS with entries

(4.100) BS
ij = (αi ,αj) =

‖αi ‖
2

2
Aij , for all i, j ∈ S,

is the matrix representing (·, ·) on RS , with respect to the basis {αi : i ∈ S}. As (·, ·) is
positive-definite on R (Proposition 4.15), it is also positive-definite on RS and so we have
det BS > 0, whence

�(4.101) det AS =
2r

‖α1‖2 · · · ‖αr ‖2
det BS > 0.

The classification of (complex finite-dimensional) semisimple Lie algebras now pro-
ceeds by first classifying thematricesA that satisfy the conditions listed in Proposition 4.21.
Then, one can ask if every such matrix is indeed the Cartan matrix of some semisimple Lie
algebra. The hardest condition to analyse is of course the determinant condition. Putting
this aside for a moment, the remaining conditions can be conveniently encoded in graphs
known as Dynkin diagrams.

4.8. Dynkin diagrams

To draw the Dynkin diagram of an r × r matrix A satisfying conditions a–d of Proposi-
tion 4.21,

• take r vertices labelled from 1 to r ;
• for i , j, connect the i-th and j-th vertices by max{−Aij ,−Aji} edges;
• if two vertices i and j are connected by more than one edge, draw an arrow on the edges
pointing from j to i, if Aij < −1, and from i to j, if Aji < −1.

The Dynkin diagram of a semisimple Lie algebra is that of its Cartan matrix. Note that
because ‖αi ‖2Aij = 2(αi ,αj) = ‖αj ‖2Aji , the arrows on a Dynkin diagram (assuming it
comes from the Cartan matrix of a semisimple Lie algebra) always point from a long
simple root to a short one. Note also that a Dynkin diagram has no edges connecting a
vertex to itself. However, it might have a loop that involves more than one vertex.

Example 45. We list the Cartanmatrices andDynkin diagrams of some low-rank semisim-
ple Lie algebras below.
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g sl(2) sl(3) sp(4) so(4) so(5) so(6)

Ag
(
2
) (

2 −1
−1 2

) (
2 −2
−1 2

) (
2 0
0 2

) (
2 −1
−2 2

) ©­­«
2 −1 0
−1 2 −1
0 −1 2

ª®®¬
Γg

1 1 2 1 2 1 2 1 2 1 2 3

N

Example 46. The Dynkin diagrams of the remaining simple classical Lie algebras (whose
Cartan matrices were worked out in Exercise 72) are as follows.

1 2
· · ·

r−1 r

Γsl(r+1), r > 2

1 2
· · ·

r−1 r

Γso(2r+1), r > 3

1 2
· · ·

r−1 r

Γsp(2r ), r > 3

1 2
· · ·

r−2

r−1

r

Γso(2r ), r > 4

Beautiful, aren’t they? N

One of the main advantages of working with the Dynkin diagrams is that they easily
account for the reordering of the simple roots that make the Cartan matrix non-unique.
Indeed, a Cartan matrix may be obtained from another one by reordering if and only if their
Dynkin diagrams (without vertex labels) are isomorphic as graphs. It therefore follows
that two semisimple Lie algebras are isomorphic if and only if their Dynkin diagrams are.
From the diagrams listed above, it is now easy to deduce that

(4.102) sp(4) ' so(5) and sl(4) ' so(6).

A second advantage of Dynkin diagrams relates to the interpretation of whether they
are connected or not. We saw in Proposition 4.17 that a simple Lie algebra corresponds
to an irreducible root system, ie. one that cannot be written as a disjoint union of two
non-empty mutually orthogonal subsets. It is clear that if a root system is reducible, so
∆ = ∆1 ∪ ∆2 with ∆1,∆2 , � and (∆1,∆2) = 0, then we have a similar partition of the
simple roots: Π = Π1 ∪ Π2 with Π1,Π2 , � and (Π1,Π2) = 0.

Exercise 75. Prove this statement about Π. H

The algorithm for reconstructing the root system from the simple roots may now be used to
show the converse: a partition of simple roots into non-empty orthogonal subsets implies
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a reducible root system. But, simple roots are orthogonal if and only if Aij = 0, so such a
partition allows one to order the simple roots to make the Cartan matrix block-diagonal.
We thus have the following sharpening of Proposition 4.17.

Proposition 4.22. A semisimple Lie algebra g is simple if and only if its Dynkin diagram
Γg is connected.

In particular, the classical Lie algebras sl(r + 1), so(2r + 1), sp(2r ) and so(2r ), excepting
so(2) and so(4), are simple because their Dynkin diagrams, exhibited in Examples 45
and 46, are connected.

Our aim is to classify the (complex finite-dimensional) simple Lie algebras. The above
technology reduces this classification to determining their (connected) Dynkin diagrams,
which we know must satisfy the determinant condition of Proposition 4.21. Whilst this
condition is a little awkward to analyse, it lends itself to the graph-theoretic world of
Dynkin diagrams because it essentially states that every subgraph of the Dynkin diagram
of a simple Lie algebra must also correspond to a Cartan matrix of positive determinant.

The classification of simple Lie algebras may therefore be attacked by classifying
connected Dynkin diagrams whose subgraphs all have positive determinant. This, in
turn, may be done iteratively by adding vertices and edges to known positive-determinant
diagrams and recording whether the result is a new positive-determinant diagram or
something else (which can then never appear as a subdiagram again).

This turns out to be an efficient, though quite combinatorial, route to the classification
condition. The determinant condition itself turns out to be so powerful in this respect that
one could even drop some of the other constraints of Proposition 4.21 (cf. Carter, Ch. 6).

Theorem 4.23. The connected Dynkin diagrams whose corresponding matrices satisfy
all the conditions of Proposition 4.21 are exhausted by those given in Examples 45 and 46
(omitting that of so(4)) and the following five exceptions.

1 2 3 4 5

6

Γe6

1 2 3 4 5 6

7

Γe7

1 2 3 4 5 6 7

8

Γe8

1 2 3 4
Γf4

1 2
Γg2
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We remark that the ordering of the labels of these exceptional Dynkin diagrams varies
considerably between sources. It is therefore common to see people refer to “Bourbaki’s
ordering”, as a standard reference, in papers.

We shall not prove this classification result formally (see Carter, Ch. 6), but instead
content ourselves with sketching the basic ideas. First, one shows that the five excep-
tional Dynkin diagrams do actually satisfy the conditions of Proposition 4.21 (those of
Examples 45 and 46 do by construction).

Exercise 76.

(a) Write down the “Cartan matrices” corresponding to each of the exceptional Dynkin
diagrams of Theorem 4.23 and show that each has positive determinant. Explain
carefully why computing one determinant each is enough to show that the determinant
condition of Proposition 4.21 is satisfied.

(b) For completeness, compute the determinants (inductively) of the Cartan matrices
corresponding to the Dynkin diagrams of Examples 45 and 46. H

Next, one adds a “zeroth” vertex to the Dynkin diagrams of Examples 45 and 46 and Theo-
rem4.23, connecting it to the original diagramwith some new edges so that the determinant
of the corresponding extended matrix is 0. These diagrams violate Proposition 4.21 and
so cannot be the Dynkin diagram of a simple Lie algebra.

Exercise 77. Show that the following diagrams are not the Dynkin diagrams of any simple
Lie algebra.

0

12

...

r−1 r
(r > 2)

0

1

2 3
· · ·

r−1 r

(r > 3)

0 1
· · ·

r−1 r

(r > 2)

0

1

2
· · ·

r−2

r−1

r(r > 4)

0

6

3
2

1
4

5

0 1 2 3 4 5 6

7

1 2 3 4 5 6 7

8

0

0 1 2 3 4

0 1 2

H
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Finally, one uses the fact that the Dynkin diagram of any simple Lie algebra cannot
have any of these “forbidden diagrams” as subgraphs to rule out any but those found in
Examples 45 and 46 and Theorem 4.23.

This classifies the Dynkin diagrams that satisfy the positive-determinant condition. To
complete the classification of the simple Lie algebras, it only remains to show that the
exceptional diagrams of Theorem 4.23 are actually the Dynkin diagrams of some simple
Lie algebras, now known as exceptional Lie algebras. (The fact that such a Lie algebra
is unique, if it exists, is Theorem 4.20.) These Lie algebras indeed exist and are denoted,
somewhat unimaginatively, by

e6, e7, e8, f4 and g2,

as in Theorem 4.23. In each case, the subscript denotes the Lie algebra’s rank. They
were originally constructed explicitly — indeed, Cartan’s doctoral thesis is where these
constructions were first found.

Interestingly, there are constructions of each of the exceptional Lie algebras that employ
the octonions �. This is somewhat in the spirit of orthogonality being associated to
� and unitarity being associated to �, whilst being symplectic is properly regarded as
“orthogonality” for the quaternions �. The fact that there are infinite families of simple
Lie algebras associated with �, � and � (namely so(n), sl(n) ' su(n)� and sp(2n)) but
only finitely many associated with � may be due to the fact that � is not associative so a
few coincidences need to occur before one can construct an associative Lie group or an
associative Lie algebra (in the sense of the Jacobi identity) from it.1

Luckily, a general construction was found much later by Serre.

Theorem 4.24 (Serre). Let A be the r × r Cartan matrix of a root system ∆. Then, the
(complex) Lie algebra g defined by generators Ei , Hi and Fi , i = 1, . . . , r , and relations

[Hi ,Hj] = 0, [Hi ,Ej] = AijEj , [Hi , Fj] = −AijFj , [Ei , Fj] = δijHj , ∀i, j,(4.103a)

ad(Ei)1−Ai jEj = ad(Fi)1−Ai jFj = 0, ∀i , j,(4.103b)

is semisimple of rank r and finite-dimensional. Moreover, g has span{H1, . . . ,Hr } as a
Cartan subalgebra and A as a Cartan matrix.

The relations (4.103a) are known as the Chevalley relations whilst (4.103b) are the Serre
relations. We shall not prove this powerful theorem. However, we can check that these
relations are indeed satisfied by all semisimple Lie algebras.

1Those who find this fascinating might well look at Adams’ Lectures on exceptional Lie groups and (eg.)
https://mathoverflow.net/questions/99736/beautiful-descriptions-of-exceptional-groups ,
http://math.ucr.edu/home/baez/octonions/ .

https://mathoverflow.net/questions/99736/beautiful-descriptions-of-exceptional-groups
http://math.ucr.edu/home/baez/octonions/


78 D RIDOUT

Exercise 78. Use the root strings of Proposition 4.13 (cf. Examples 43 and 44) to prove
that the Chevalley-Serre relations (4.103) are satisfied in a semisimple Lie algebra if we
let Ei = eαi , Hi = hαi and Fi = fαi . H

This concludes the classification of (complex finite-dimensional) semisimple Lie alge-
bras. They are determined uniquely by their root systems, which are in turn completely
determined by their simple roots, which are in turn completely determined by their Cartan
matrices or, equivalently, by their Dynkin diagrams. Up to isomorphism, there are four
infinite families of simple Lie algebras:

(a) ar ≡ sl(r + 1), for r > 1;
(b) br ≡ so(2r + 1), for r > 1;
(c) cr ≡ sp(2r ), for r > 1; and
(d) dr ≡ so(2r ), for r > 3.

The a–d labelling of these classical Lie algebras is traditional (though often capital letters
are used instead) and aligns with the names given to the five exceptional simple Lie
algebras e6, e7, e8, f4 and g2. We note again, for completeness, that a1 ' b1 ' c1, b2 ' c2
and a3 ' d3; otherwise, the simple Lie algebras listed are all mutually inequivalent.

A (semi)simple Lie algebra whose Dynkin diagram contains no arrows, ie.no double
or triple bond, is said to be simply laced. From the classification result, we see that the
simply laced simple Lie algebras are the sl(r + 1), for r > 1, the so(2r ), for r > 4, along
with e6, e7 and e8. In other words, the simply laced cases are of types a, d or e. Such
“ADE” classifications appear in all sorts of places in mathematics including the platonic
solids, the eigenvalues of symmetric matrices, algebraic singularities, finite-type quivers
and subfactors.

More interestingly, mathematical physicists have started adding to this list. For example,
the modular-invariant partition functions of the Virasoro minimal model conformal field
theories also fall into an ADE-type classification. Indeed, quantum mechanics, quantum
field theory and string theory have all proven quite adept in recent years at not only
generating new examples of ADE, but also of explaining why different ADE classifications
are related. But we have no space for this here! We instead conclude by noting that no
discussion of the classification of simple Lie algebras would be complete without an
investigation of the lowest-rank exceptional Lie algebra.

Exercise 79.

(a) Given the Dynkin diagram in Theorem 4.23, write down the Cartan matrix of g2, the
relative lengths of the simple roots and the angle between them.

(b) Reconstruct the root system of g2 using the algorithm described in Examples 43
and 44. Draw it, making sure to respect the relative lengths of the roots and the
angles between them.
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(c) Show that g2 has a semisimple subalgebra spanned by the simple coroots and the root
vectors eα with α long.

(d) Carefully compute the simple coroots of this subalgebra and show that its Cartan
matrix is that of sl(3), thereby proving that there is an injective homomorphism
sl(3) ↪→ g2 of Lie algebras.

(e) Do the simple coroots and the short root vectors likewise span a subalgebra isomorphic
to sl(3)? H

Exercise 80. For any simple Lie algebra g, there is a unique root, called the highest root
and traditionally denoted by θ , for which θ + αi is not a root, for all i = 1, . . . , rank g.

(a) Determine the root vector eθ , for each of the simple classical Lie algebras, using the
data in Example 41.

(b) In each case, fix the proportionality constant between the Killing form and the trace
form in the defining representation, cf. Exercise 54.

(c) Compute κ(eθ , e−θ ) and κ(θ∨,θ∨), thereby determining fθ and ‖θ ‖2.
(d) Finish by calculating b ∈ � such that κ̃ = bκ yields ‖θ ‖2 = 2. Compare κ̃ with the

trace form in the defining representation. H
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5. Representations of semisimple Lie algebras

Having learned all about Killing forms, roots, Cartan matrices and Dynkin diagrams,
it is now time to see how representations of general semisimple Lie algebras work. Our
experience with sl(2) leads us to expect that things will work out nicely (and they do).
However, this is far from trivial. In a representation consisting of n × n matrices, each
independent Lie bracket will give rise to ∼ n2 simultaneous equations that have to be
satisfied. So, constructing representations is actually not at all an obvious game and
classifying them seems to be non-trivial. However, this wouldn’t be much of a course if
there wasn’t a beautiful result waiting to be uncovered...

5.1. Weights and weight modules
We first introduce a new concept (of tremendous importance): the weights of a repre-

sentation (or module). This is the generalisation of the concept of roots from the adjoint
representation (the Lie algebra itself) to arbitrary representations. For convenience, we
assume throughout that g denotes a (finite-dimensional complex) semisimple Lie algebra.

So, we define a weight vector of a representation π on the g-module V to be a simulta-
neous eigenvector v of the linear operators π (H ), for all H in the Cartan subalgebra g0 of
g. The weight of this eigenvector is then the linear functional λ ∈ g∗0 that satisfies

(5.1) π (H )v = λ(H )v, ie. Hv = λ(H )v .

The set of all weight vectors (extended by 0) of a module V , for a given weight, ie. a
simultaneous eigenspace for the Cartan subalgebra, is called a weight space of V .
You can see that if π = ad, so V = g, then Hv = ad(H )v = [H ,v] and we recover the

definition of the roots of g by taking v to be a corresponding root vector. Thus, every
root of g is a weight of the adjoint module. However, this module has another weight
because we may also take v to be a (non-zero) Cartan element so that [H ,v] = 0. Roots
are required to be non-zero, whereas there is no such constraint on weights. Indeed, 0 is
always a weight of the adjoint module of a semisimple Lie algebra.

Exercise 81. Show that if V andW are isomorphic g-modules, then they have the same
set of weights. Is the converse true? H

Every finite-dimensional g-moduleV possesses aweight vector. To see this, note that the
simple coroothα1 has a non-zero eigenspaceV1 ⊆ V of eigenvalue λ(hα1) (where λ ∈ g∗0). If
rank g = 1, thenwe are done. Otherwise, observe thathα2 preservesV1 because it commutes
with hα1: v ∈ V1 if and only if hα1v = λ(hα1)v, hence hα1(hα2v) = hα2hα1v = λ(hα1)hα2v

and so hα2v ∈ V1. It follows that hα2 has a non-zero eigenspace V2 ⊆ V1. If rank g = 2,
then we are done; otherwise, continue until we have a non-zero simultaneous eigenspace
of all the simple coroots.
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Amodule that possesses a basis whose elements are all weight vectors is called a weight
module. We will shortly show that every finite-dimensional irreducible module is a weight
module. A later goal is to extend this to all finite-dimensional modules; see Section 5.7.

Example 47. Recall from Theorem 3.1 that the finite-dimensional irreducible sl(2)-
modules Lλ are parametrised by a non-negative integer λ and that Lλ is spanned by
vectors v(n)

λ
= f nvλ, n = 0, 1, . . . , λ, that satisfy

(5.2) hv(n)
λ
= (λ − 2n)v(n)

λ
.

As h spans a Cartan subalgebra, we see that each v(n)
λ

is a weight vector corresponding to
the weight λ(n) defined by λ(n)(h) = λ − 2n. The sl(2)-modules Lλ are therefore all weight
modules and their weight spaces are all 1-dimensional. N

Exercise 82. If V andW are weight modules, show that V ⊕W , V ⊗W and V ∗ are also
weight modules. What are their weights, in terms of those of V andW ? H

Proposition 5.1. A finite-dimensional irreducible g-module V is a weight module.

Proof. Fix i ∈ {1, . . . , rank g}. As dimV < ∞, the simple coroot hαi ∈ g0 has an
eigenvector when acting uponV . Thus, the spanWi of the eigenvectors of hαi is non-zero.
Moreover,Wi is a submodule of V as the simple coroots and the root vectors form a basis
of g:

(5.3) hαiv = λv ⇒
hαihα jv = λhα jv,

hαieαv =
(
λ + α(hαi )

)
eαv .

Because V is assumed to be irreducible, we must haveWi = V . The simple coroot hαi
therefore acts diagonalisably on V .

Since i was arbitrary, this conclusion holds for all simple coroots. As they commute,
there is a basis of V that simultaneously diagonalises their action. This basis also si-
multaneously diagonalises the action of g0 because the simple coroots span the Cartan
subalgebra. This basis therefore consists of weight vectors, by definition, hence V is a
weight module. �

As the simple coroots hαi = α∨i form a basis of the Cartan subalgebra g0, it is often
convenient to equate a weight λ ∈ g∗0 with the vector whose i-th entry is the eigenvalue
λ(α∨i ), i = 1, . . . , rank g. For the sl(2)-modules Lλ, this means identifying λ(n) with the
1-vector (λ − 2n) (or just λ − 2n). In general, the numbers

(5.4) λi = λ(α
∨
i )
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are called the Dynkin labels of the weight λ. The Dynkin labels of the simple root αj
are then αj(α∨i ) = Aij , i = 1, . . . , rank g, ie. the Dynkin labels of the simple roots are the
columns of the Cartan matrix.

Abstractly, identifying weights with their Dynkin labels is equivalent to choosing the
basis {ωi} of g∗0 that is dual to the simple coroot basis of g0:

(5.5) ωi(α
∨
j ) = δij , for all i, j = 1, . . . , rank g.

More precisely, (5.4) and (5.5) together imply that

(5.6) λ =
rank g∑
i=1

λiωi .

The basis elements ωi are called the fundamental weights of g because of the fundamental
role that they will play in the theory of finite-dimensional representations of g. We remark
that the fundamental weights are orthogonal to the simple roots in the following sense:

(5.7) (ωi ,αj) = ωi(ι
−1(αj)) =

‖αj ‖
2

2
ωi(α

∨
j ) =

‖αj ‖
2

2
δij .

However, we emphasise that this does not mean that ωi and αi are proportional!

Example 48. When g = sl(2), dim g∗0 = 1 and so the fundamental weight ω1 and the
simple root α1 must be proportional. Writing ω1 = aα1, we see that (5.7) gives

(5.8)
‖α1‖

2

2
= (ω1,α1) = a‖α1‖

2 ⇒ a =
1
2
.

We thus have α1 = 2ω1, consistent with our earlier discovery that the Dynkin labels of
the simple roots, in this case the sole Dynkin label is (α1)1 = 2, form the columns of the
Cartan matrix, which in this case is just

(
2
)
. N

Example 49. In the defining sl(3)-module �3, the simple coroots α∨1 and α∨2 are (custom-
arily) represented by the matrices E11 − E22 and E22 − E33, respectively:

(5.9) α∨1 7−→
©­­«
1 0 0
0 −1 0
0 0 0

ª®®¬ , α∨2 7−→
©­­«
0 0 0
0 1 0
0 0 −1

ª®®¬ .
Being diagonal, it is easy to read off the simultaneous eigenvalues: (1, 0), (−1, 1) and
(0,−1). These are therefore the weights of the defining module, expressed in the basis of
fundamental weights, ie. these are the Dynkin labels of the three weights, ω1, ω2 −ω1 and
−ω2, of the defining representation.

If we draw theseweights on the same diagram that we used for roots, we get the following
(beautifully symmetric) picture.
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α1 = (2,−1)

α2 = (−1, 2)

ω1

−ω2

Here, we’ve drawn the weights of the defining module in blue. The (hopefully by now
familiar) root system of sl(3) is shown, for comparison, in black. Note thatα1 is orthogonal
to ω2 and α2 is orthogonal to ω1, as dictated by (5.7). N

Exercise 83. Repeat the above example for the dual of the defining representation of
sl(3), recalling that the dual was defined in Exercise 29. Repeat again for the defining
representations of sp(4) and so(4), then repeat for the dual representations. H

One thing that we can see in the weight diagram of Example 49 is that the difference
between any two distinct weights of the defining module of sl(3) is a root of sl(3). We can
understand why this, or rather something like this, must be true for any irreducible weight
module: If we start from a weight vector v of weight λ, then acting with a Cartan element
does not change the weight, whereas acting with the root vector eα shifts the weight to
λ+α . Acting repeatedly with root vectors onv necessarily generates the whole irreducible
module — otherwise the vectors generated from v by this action would span a non-zero
proper submodule. It follows that all the weights of an irreducible weight module must
differ from any one of its weights by integer linear combinations of roots.

We canmake this more precise by introducing the root latticeQwhich is the free abelian
subgroup of g∗0 spanned by the simple roots αi . Its elements therefore consist of linear
combinations of the simple roots whose coefficients are all integers. Clearly, every root
belongs to Q.
Recall that an indecomposable g-module is one that cannot be written as the direct sum

of two submodules.

Proposition 5.2. If λ and µ are weights of an indecomposable weight module, then
λ − µ ∈ Q.

Proof. Suppose that λ − µ < Q. Then, there is a non-zero submodule generated by the
weight vectors whose weights are equal to λ mod Q and a non-zero submodule generated
by the weight vectors whose weights are not equal to λ mod Q. As neither submodule
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is zero, but their intersection must be zero, it follows that the module decomposes as the
direct sum of these two submodules. �

Along with the root lattice Q, we also introduce the weight lattice P, which is the
free abelian subgroup of g∗0 spanned by the fundamental weights ωi . We will also find it
convenient to define Q> and P> to be the non-negative integer linear combinations of the
αi and ωi , respectively. We note that Q ⊆ P, because the Dynkin labels of the simple roots
are the entries of the Cartan matrix (ie. they are integers), but that Q> * P>. One reason
to care about the weight lattice is the following result:

Proposition 5.3. If λ is a weight of a finite-dimensional g-moduleV , then its Dynkin labels
are integers, ie. λ ∈ P.

Proof. Fix i ∈ {1, . . . , rank g} and recall from Theorem 4.11 that the simple root αi gives
rise to an inclusion (injective homomorphism of Lie algebras) sl(2) ↪→ g in which the
Cartan element h ∈ sl(2) is mapped to the coroot α∨i . By composing this homomorphism
with the representation of g on V , sl(2) ↪→ g → gl(V ), we obtain a finite-dimensional
representation of sl(2) on V .

By Weyl’s theorem (Theorem 3.5), V is completely reducible as an sl(2)-module,
decomposing (uniquely) into a direct sum of irreducible sl(2)-modules. Each irreducible
is isomorphic to one of the Lλ, by Theorem 3.1, and so the eigenvalues of h, hence those
of α∨i as well, are integers. But, ifv ∈ V is a weight vector of weight λ (with respect to the
action of g), then α∨i v = λ(α

∨
i )v = λiv shows that the i-th Dynkin label of λ is an integer.

Since i was arbitrary, the proposition is proved. �

This result allows us to settle another detail relating to the trace forms κπ , π a finite-
dimensional g-representation, introduced in Section 4.1. We recall from Exercise 54 that
every trace form is proportional to the Killing form when g is simple. We can now say
something about when the proportionality constant is zero.

Exercise 84. Use Proposition 5.3 to show that if g is simple and π is irreducible and
finite-dimensional, then the trace form κπ of (4.20) is degenerate if and only if π is
trivial. H

On a somewhat different note, the fact that Q is a sublattice of P leads those of the
algebraic persuasion to ask about the quotient lattice P/Q (the quotient is as an abelian
group). This turns out to be quite interesting! In particular, the number of elements in
the quotient serves as a measure of the relative sizes of the root and weight lattices. We
can either measure this directly by counting integral points, or we can realise |P/Q| as the
ratio of the volumes of the parallelepipeds defined by the basis vectors.



MAST90132: LIE ALGEBRAS 85

Example 50. The root lattice of sl(2) is spanned by the simple root α1 = (2) and the
weight lattice is spanned by the fundamental weight ω1 = (1). We may therefore identify
Q and P with 2� and �, respectively. It’s pretty clear that |P/Q| = 2.

Similarly, the picture below shows that the parallelepiped defined by the simple roots
of sl(3) has three times the area of that defined by its fundamental weights, ie. |P/Q| = 3.

α1

α2

ω1

ω2

N

Exercise 85. For sp(4), so(4) and g2, compute the order of P/Q by measuring the areas of
the simple root and fundamental weight parallelepipeds (with diagrams). Compare your
results, as well as those for sl(2) and sl(3), with the determinants of the corresponding
Cartan matrices. Explain any coincidences that you observe. H

5.2. Universal enveloping algebras

In this section, we’ll start developing some of the fundamental tools of representation
theory that we need, the first of these being the notion of a universal enveloping algebra of a
Lie algebra g. If you have studied group representation theory, then this associative algebra
is to g as the group algebra is to a group — in particular, the representation theories of g
and its universal enveloping algebra are identical. In what follows, we shall temporarily
suspend our automatic assumption that g is semisimple and finite-dimensional.
The universal enveloping algebra of g is an associative algebra that is best motivated by

thinking about the matrices (or linear operators) that one works with in a representation.
Unlike Lie algebra elements, you can multiply matrices and this multiplication makes the
space of endomorphisms of a module V into an associative algebra. From an associative
algebra, one can always define a Lie algebra by taking the Lie bracket to be the commutator
[A,B] = AB − BA, but then we lose the ability to multiply elements. The universal
enveloping algebra is then an associative algebra, constructed from a given Lie algebra, in
which the multiplication is consistent with the Lie bracket being a commutator, just as we
require in a representation. This is the motivation — passing to the universal enveloping
algebra does not change the representation theory, but we gain a more powerful algebraic
structure (associative multiplication).

We want to be able to multiply elements of a Lie algebra g: How do we do that,
abstractly, whilst maintaining all the usual properties that a multiplication should have
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(distributivity, associativity, etc.)? This is what tensor products are for! Regarding g as a
vector space (for now), we let

(5.10) Tn(g) = g ⊗ · · · ⊗ g︸       ︷︷       ︸
n>0 times

and T0(g) = �.

We then form the direct sum

(5.11) T(g) =
∞⊕
n=0

Tn(g).

Wemention that the elements of an infinite direct sum are defined to be linear combinations
of vectors from the direct summands where only finitely many of the coefficients are non-
zero. Here, each summand Tn(g) consists of linear combinations of products of n elements
of g. Technically, the addition of two elements of different degrees n should be denoted by
⊕, but we will identify this with the addition + of each Tn(g), for notational convenience.
We can nowmake the vector space T(g) into an associative algebra with unit 1 ∈ � = T0(g)

upon defining

(5.12) (x1 ⊗ · · · ⊗ xm)(y1 ⊗ · · · ⊗ yn) = x1 ⊗ · · · ⊗ xm ⊗ y1 ⊗ · · · ⊗ yn,

for all x1, . . . ,xm,y1, . . . ,yn ∈ g. This algebra T(g) is called the tensor algebra of g.

To get the universal enveloping algebra, we not only have to be able to multiply, but
we also need to take into account the fact that the Lie bracket is replaced by the matrix
commutator in representations. In the abstract setting, this is done by considering the
following two-sided ideal of T(g):

(5.13) J = {U Ix ,yU
′ : x ,y ∈ g andU ,U ′ ∈ T(g)}, where Ix ,y = x ⊗ y − y ⊗ x − [x ,y].

Setting this ideal to zero will therefore force the Lie bracket [x ,y] to coincide with the
(abstract tensor algebra) commutator x ⊗ y − y ⊗ x . We therefore define the universal
enveloping algebra of g to be the quotient

(5.14) U(g) =
T(g)

J
.

U(g) is thus an associative algebra. Because J∩T0(g) is obviously 0, the constants survive
the quotienting and so the unit 1 ∈ T(g) determines a unit for U(g) (which we shall denote
by 1 = 1).

Example 51. When g is an abelian Lie algebra, the ideal J is generated by elements of the
form x ⊗ y − y ⊗ x , where x ,y ∈ g. The universal enveloping algebra U(g) may therefore
be identified with the algebra of polynomials in the elements of g. More precisely, if
{xi : i ∈ I } is a basis of g, then U(g) ' �[xi : i ∈ I ]. N
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It is, unfortunately, not clear whether J ∩ T1(g) = {0}, ie. if any non-zero elements
of T1(g) = g are set to zero in U(g). If there were, then this would mean that the natural
composition

(5.15) i : g = T1(g) ↪→ T(g)� U(g)

would not be an inclusion. It seems difficult to imagine how one could obtain an element
of T1(g) from the Ix ,y; the proof that one cannot is therefore correspondingly unintuitive.
However, the result is very important and is usually obtained as a consequence of an even
more important result known as the Poincaré–Birkhoff–Witt theorem. Before coming to
this, let us see why U(g) is referred to as being universal.

Proposition 5.4. Let A be a unital associative algebra (over �) and let π : g → A be a
homomorphism of Lie algebras (taking the Lie bracket of A to be the commutator). Then,
there is a unique homomorphism ϕ : U(g) → A of unital associative algebras such that

(5.16) ϕ ◦ i = π .

U(д)

g A

i
ϕ

π

In other words, all morphisms from g to A must factor uniquely through U(g).

Proof. First, extend π to a homomorphism π ′ : T(g) → A of unital associative algebras by
setting

(5.17) π ′(x1 ⊗ · · · ⊗ xn) = π (x1) . . . π (xn), for all x1, . . . ,xn ∈ g,

and extending by linearity. Since

(5.18) π ′(x ⊗ y − y ⊗ x − [x ,y]) = π (x)π (y) − π (y)π (x) − π ([x ,y]) = 0,

because π is a Lie algebra homomorphism, it follows that π ′(J) = 0. π ′ therefore induces
a homomorphism ϕ : U(g) → A such that

U(д)

T(g) A

ϕ

π ′

commutes. Restricting the domain of the horizontal and vertical maps to g gives the
desired commutative diagram.

It remains to prove the uniqueness of ϕ. So suppose that ϕ̃ ◦ i = π , for some homomor-
phism ϕ̃ : U(д) → A of unital associative algebras. As g = T1(g) generates T(g), it follows
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that i(g) generates U(g). Thus, the actions of ϕ and ϕ̃ on U(g) are completely determined
by their restrictions to i(g). But these restrictions are identical, ϕ̃ ◦ i = π = ϕ ◦ i, so indeed
we have ϕ = ϕ̃. �

We remark that a homomorphism of unital associative algebras must not only respect
the algebraic operations, but also send the unit to the unit. A representation of a unital
associative algebra is, of course, just a homomorphism of unital associative algebras into
End(V ), for some vector space V .

Exercise 86. Use Proposition 5.4 to prove that the representations of g and U(g) are in
bijection by:

(a) Showing that any representation π of g onV induces a representation ϕ of U(g) onV .
(b) Showing that any representation ϕ of U(g) onV induces a representation π of g onV .
(c) Showing that these two constructions are inverse to one another. H

We now turn to the all-important Poincaré–Birkhoff–Witt theorem and its somewhat
subtle proof.

Theorem 5.5 (Poincaré–Birkhoff–Witt). The canonical map from g into U(g) is an inclu-
sion. Moreover, if {xi : i ∈ I } is an ordered basis of g (so the index set I admits a total
order), then the (equivalence classes of the) monomials

(5.19) xi1 ⊗ xi2 ⊗ · · · ⊗ xin , for all n ∈ �>0 and i1 6 i2 6 · · · 6 in in I ,

form a basis of U(g), called a Poincaré–Birkhoff–Witt basis.

Proof. Proving that the monomials (5.19) span U(g) is not hard — one just repeatedly
applies the commutation rules

(5.20) xi ⊗ xj = xj ⊗ xi + [xi ,xj], for all i, j ∈ I ,

to rewrite any other monomial as a linear combination of monomials with the desired
order. Because [xi ,xj] ∈ g has (tensor) degree 1, whilst xi ⊗ xj and xj ⊗ xi have degree
2, each application results in one term in which the xi and xj have been correctly ordered
and another term of strictly lower degree which may be dealt with inductively.

The hard part is proving that the monomials (5.19) are linearly independent. The in-
clusion property then follows easily. To show the linear independence, we shall construct
a linear map ψ : U(g) → �[zi : i ∈ I ] such that the images of the monomials (5.19)
are obviously linearly independent. This will be constructed by exhibiting a linear map
ψ : T(g) → �[zi : i ∈ I ] such that the images of the monomials (5.19) are linearly indepen-
dent and the two-sided ideal J of T(g) is mapped to 0. Because the linear independence
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of the images implies that of the monomials (5.19), the proof will therefore be complete
once the existence ofψ has been established.

We claim that a linear mapψ is defined by the following two requirements:

ψ (xi1 ⊗ · · · ⊗ xin ) = zi1 · · · zin ,(5.21a)

for all n ∈ �>0 and i1 6 · · · 6 in in I , and

ψ (xi1 ⊗ · · · ⊗ xim ⊗ xim+1 ⊗ · · · ⊗ xin ) = ψ (xi1 ⊗ · · · ⊗ xim+1 ⊗ xim ⊗ · · · ⊗ xin )(5.21b)

+ψ (xi1 ⊗ · · · ⊗ [xim ,xim+1] ⊗ · · · ⊗ xin ),

for all n ∈ �>2 and 1 6 m < n. Clearly, (5.21a) defines ψ on the correctly ordered
monomials (5.19) and (5.21b) is designed to defineψ inductively on the remaining mono-
mials by swapping xim and xim+1 in they are incorrectly ordered. Moreover, (5.21b) also
guarantees thatψ annihilates the ideal J.

It therefore only remains to check that the linear mapψ is well-defined: one can reduce
an incorrectly ordered monomial to a correctly ordered one in many ways, all of which
must result in the same value of ψ . We check that ψ is well-defined using a double
induction argument. Note first that for n 6 2, the action ofψ is well-defined because there
is at most one way to reorder a monomial. Moreover, if we define the index of a monomial
xi1 ⊗ · · · ⊗ xin to be the number ofm, 1 6 m < n, such that im > im+1, then the action ofψ
on every index-0 monomial is well-defined, by (5.21a).

These are the base cases — the inductive step requires us to assume that the action of
ψ on monomials of degree less than n, and on monomials of degree n and index less than
k , is well-defined. We then need to prove that the action on monomials of degree n and
index k is well-defined. This is the purpose of Exercise 87 below (mwouhaha!). �

Exercise 87. Complete the proof of Theorem 5.5 by showing inductively that ifm andm′,
where 1 6 m < m′ < n, satisfy im > im+1 and im′ > im′+1, then applying (5.21b) twice to

(5.22) T = ψ (xi1 ⊗ · · · ⊗ xim ⊗ xim+1 ⊗ · · · ⊗ xim′ ⊗ xim′+1 ⊗ · · · ⊗ xin )

results in a well-defined action ofψ , no matter which pair is swapped first. You should
consider the casem′ =m + 1 separately. H

It follows that the universal enveloping algebra of any (non-zero) Lie algebra is infinite-
dimensional. We remark that in all practical circumstances, we can (and will!) omit
the tensor product symbols when working in U(g) and replace the Lie bracket by the
commutator, as one does in a representation.
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Example 52. If we order the standard basis of sl(2) as { f ,h, e}, then the corresponding
Poincaré–Birkhoff–Witt basis of U(g) is

(5.23) { f ihjek : i, j,k ∈ �>0}.

Of course, different orderings of { f ,h, e} lead to different Poincaré–Birkhoff–Witt bases.
Similarly, taking { fθ , fα2, fα1,hα1,hα2, eα1, eα2, eθ } as an ordered basis of sl(3) (we recall

that θ = α1 + α2 is the highest root of sl(3)) results in the Poincaré–Birkhoff–Witt basis

N(5.24) { f iθ f
j
α2 f

k
α1h
`
α1h

m
α2e

n
α1e

p
α2e

q
θ

: i, j,k, `,m,n,p,q ∈ �>0}.

Exercise 88. Show that if g has a triangular decomposition g = g− ⊕ g0 ⊕ g+, cf. Equa-
tion (4.22), then its universal enveloping algebra decomposes as

H(5.25) U(g) = U(g−) ⊗ U(g0) ⊗ U(g+).

Exercise 89. Prove thatU(g) has no zero-divisors, ie. that ifU ,U ′ ∈ U(g) are both non-zero,
thenUU ′ , 0. H

5.3. Highest-weight modules

We now resume assuming that the Lie algebra g is semisimple and finite-dimensional,
combining the weight module theory that we have seen in Section 5.1 with the Poincaré–
Birkhoff–Witt theorem (Theorem 5.5).

An incredibly important concept is that of a highestweight. Because a finite-dimensional
g-module may only have a finite number of weights, there must exist maximal weights
(for any sensible notion of “maximal”). With respect to a given set Π of simple roots αi ,
i = 1, . . . , rank g, we will take maximal to mean the following: A weight λ of a g-module
V is said to be a highest weight of V if there is a corresponding weight vector vλ ∈ V ,
called a highest-weight vector, that is annihilated by the action of the simple root vectors
eαi . It therefore follows that every finite-dimensional g-module has a highest weight.

Since the positive root vectors eα , α ∈ ∆+, may all be expressed in terms of (nested) Lie
brackets of the eαi (this follows from Proposition 4.13 and the algorithm of Section 4.7 for
constructing ∆+ from Π), it follows that highest-weight vectors are characterised by

(5.26) Hvλ = λ(H )vλ and eαvλ = 0, for all H ∈ g0 and α ∈ ∆+.

We remark that a sufficient condition for λ to be a highest weight, for a given g-moduleV ,
is that λ + αi is not a weight of the module for any i = 1, . . . , rank g. However, this need
not be necessary if V is reducible.

Exercise 90. Strengthen the proof of Proposition 5.3 to conclude that every highest weight
of a finite-dimensional weight module belongs to P>. H
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We remark that weights λ with non-negative integer Dynkin labels, ie. λ ∈ P>, are said to
be dominant integral.

Recall that we have a particularly nice basis of g consisting of the root vectors eα and
fα , α ∈ ∆+, and the simple coroot vectors α∨i = hαi , i = 1, . . . , rank g. The Poincaré–
Birkhoff–Witt theorem (Theorem 5.5) has some important things to say when we order
this basis appropriately.

Proposition 5.6. An irreducible module with a highest weight has a unique highest weight
and the corresponding highest-weight vector is unique up to scalar multiples.

Proof. LetV be irreducible and let λ and µ be highest weights ofV with respective highest-
weight vectors v and w . By irreducibility, the submodule generated by v ∈ V is V itself,
hence w ∈ V may be written as a linear combination of Poincaré–Birkhoff–Witt basis
elements acting on v. We choose to order these basis elements so that, for each α ∈ ∆+,
the fα always appear to the left of the hαi , which in turn always appear to the left of the eα .

The highest weight property of v then implies that any basis element involving a non-
zero power of an eα will annihilate v and any basis element involving a non-zero power of
an hαi will return a multiple of v. It follows thatw can be obtained from v by acting with
a linear combination of Poincaré–Birkhoff–Witt basis elements which only involve the fα .
Thus, the weight difference λ − µ must be a non-negative integer linear combination of
the simple roots: λ − µ ∈ Q>.

Now exchange the roles ofv andw in this argument. Then, we conclude that µ−λ ∈ Q>
and so arrive at λ − µ ∈ Q> ∩ (−Q>) = 0, ie. λ = µ. But, this implies that v andw may be
obtained from one another by acting with a linear combination of Poincaré–Birkhoff–Witt
basis elements involving only the hαi . Since v and w are weight vectors, they are thereby
proportional. �

Proposition 5.1 tells us that all irreducible finite-dimensional modules are weight mod-
ules and Exercise 90 tells us that the highest weights of suchmodules are dominant integral
(belong to P>). As all finite-dimensional modules must have a highest weight, we now
conclude that every irreducible finite-dimensional module has exactly one highest weight.
We call any module that is generated by a single highest-weight vector a highest-weight
module.

Corollary 5.7. Every finite-dimensional irreducible g-module is a highest-weight module
whose highest weight is dominant integral.

This innocuous corollary is in fact one direction of the classification result for finite-
dimensional irreducible g-modules. It turns out that they are, up to isomorphism, in
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bijection with the set P> of dominant integral weights. However, it will take quite some
effort still before we can establish this fundamental fact.

For now, we can leverage this knowledge to algorithmically determine all the weights
of a finite-dimensional, irreducible module, given only its highest weight. The key here,
as it was with analysing the roots of semisimple Lie algebras, is our knowledge of sl(2)
representation theory.

An algorithm for computing the weights of an irreducible, finite-dimensional g-module
is then:

(a) Start with the highest weight λ = (λ1, . . . , λr ), expressed in terms of its Dynkin labels
(recall (5.4) for the definition).

(b) Given any weight µ = (µ1, . . . , µr ) already found, more may be found if any of the µi
are positive: µi > 0 implies that µ − kαi is a weight, for all k = 0, 1, . . . , µi .

(c) Repeat the previous step until all the new weights found have non-positive Dynkin
labels.

This algorithm must terminate as there are only a finite number of weights to find. The
fact that µ − kαi is a weight follows from sl(2) representation theory: a positive Dynkin
label µi implies that we may apply fαi µi times to get new weight vectors. It is clear that all
of the weights generated by this algorithm must be weights of the g-module. To see that
it generates all the weights, we note that every fα may be written as a nested Lie bracket
of the fαi , so it is enough to consider the action of the latter on weight vectors. Moreover,
acting exhaustively on the highest-weight vector generates a non-zero submodule, hence
it must be the entire module by irreducibility.

It is important to note, however, that this algorithm only produces the weights. It does
not tell us theirmultiplicities, meaning the dimensions of the corresponding weight spaces.
It therefore cannot be used to compute the dimension of the g-module. In particular, it
doesn’t even tell us which dominant integral weights λ actually lead to finite-dimensional
modules!

Example 53. Let g = sl(3) and consider the irreducible module V of highest weight
λ = 2ω1 = (2, 0). Recalling that the Dynkin labels of the simple roots are the columns
of the Cartan matrix, we have α1 = (2,−1) and α2 = (−1, 2). As λ1 = 2, we know that
λ − α1 = (0, 1) and λ − 2α1 = (−2, 2) are both weights of V . As the second Dynkin label
of both these weights is positive, it follows that λ − α1 − α2 = (1,−1) is a weight of V
as are λ − 2α1 − α2 = (−1, 0) and λ − 2α1 − 2α2 = (0,−2). These last two weights have
no positive Dynkin labels, they generate nothing new. Moreover, (1,−1) only generates
(−1, 0) which we already have. These are therefore all the weights. We draw them as they
were determined and in blue in a (once again beautifully symmetric) weight diagram.
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(−2, 2) (1,−1)

(0, 1)

(−1, 0)

(2, 0)

(0,−2)

(2, 0)(−2, 2)

(0,−2)

(0, 1)

(−1, 0)
(1,−1)

The arrows pointing to the left in the first picture represent subtracting α1, the arrows
pointing right are for subtracting α2. They are colour-coded according to the order they
appear in the algorithm (black, then red, then blue).

As you did Exercise 83, you will notice that the weight diagram on the right contains
that of the dual of the defining module. This does not mean that the latter module is
a submodule, or even a quotient module, of the irreducible module with highest weight
(2, 0)— irreducibility tells us that it cannot be! N

Exercise 91. Draw the weight diagrams for the irreducible g-module of highest weight
ω2 = (0, 1), for g = sp(4) and g2. Find the weights of the fundamental so(7)-modules, ie.
those whose highest weights areω1, ω2 andω3, and (optional!) draw the weight diagrams
if you are a connoisseur of the third dimension. (Make sure that you use the same ordering
for the simple roots as in Examples 45 and 46 and Theorem 4.23.) H

Exercise 92. Show that the tensor square of any g-module V decomposes into g-modules
as V ⊗ V ' S2V ⊕ ∧2V , where

(5.27)
S2V = span{v ⊗w +w ⊗ v : v,w ∈ V },

and ∧2 V = span{v ⊗w −w ⊗ v : v,w ∈ V }.

WhenV is the defining module of sl(3), show that S2V has dimension 6 and highest weight
(2, 0). Can we therefore conclude that the module in Example 53 is (isomorphic to) S2V ?
If so, why? If not, why not? H

5.4. Verma modules
We have developed enough theory now to realise that highest-weight modules are the

key to the finite-dimensional representation theory of a given semisimple Lie algebra g.
However, we have not yet managed to prove any general existence theorems. In particular,
we would like to answer the following questions:

• Given λ ∈ g∗0, is there a g-module with λ as a highest weight?
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• Given λ ∈ P>, is there a finite-dimensional g-module with λ as a highest weight?
• In both cases, can we take the g-module to be irreducible?
• Assuming existence, when are these g-modules unique (up to isomorphism)?

In this section, we will answer the first of these questions by explicitly constructing a
highest-weight module for each highest weight λ ∈ g∗0. Much of what follows will also
hold for arbitrary Lie algebras with a triangular decomposition. If you’re interested in this
level of generality, see the excellent book by Moody and Pianzola.

Recall that g has a basis consisting of the simple coroots and the root vectors. The
Poincaré–Birkhoff–Witt theorem (Theorem 5.5) then shows that there is a basis of the
universal enveloping algebra U(g) in which each basis element has the formU = U−U0U+,
where U0 is a product of simple coroots and U+ (U−) is a product of positive (negative)
root vectors. Each of these products may be empty, of course, the meaning of which is
that we may have any ofU0 orU± being 1.
If one of these basis elements U acts on a highest-weight vector v of weight λ, then

the result will be zero unless U+ = 1, because eαv = 0 for all α ∈ ∆+. If U+ = 1, then
the U0-part of the basis element acts as a multiple of the identity because hαiv = λiv. It
follows that Uv will always be proportional to U−v, hence that the set of all U−v, where
U− runs over a basis of the universal enveloping algebra U(g−), will span the same space
that the Uv do. We will show that this space is a g-module and, moreover, that we can
construct such a g-module where this spanning set is a basis.

We pause to remark that a highest-weight vector v is also known as a vacuum, or
(sometimes) a ground state, in physics because it often has the property of having the
minimal energy (or is extremal for some other physical quantity like spin, cf. Section 3.3).
The fact that v is defined to be annihilated by the positive root vectors leads to the latter
being termed annihilation operators. The negative root vectors are then the creation
operators because they usually act non-trivially on v and so create new weight vectors.
If the vacuum has minimal energy, then these new vectors have higher energies and
are therefore referred to as excited states. The Cartan elements, on the other hand, are
often called zero modes or, in quantum physics, the quantum observables because their
eigenvalues are these energies and/or some other physically measurable quantities.

In any case, to show that U(g−)v is a g-module, we must first address the subtlety that
arises because to construct this g-module, we start from a highest-weight vector v which,
by definition, must belong to some g-module. We can get around this in two distinct
ways, though of course they are equivalent at the end of the day. The first is concrete and
“top-down”, though it takes a bit of setting up; the second is abstract and “bottom-up”,
but requires a fair whack of mathematical maturity.

Exercise 93. Show that U(g) becomes a g-module when the action is defined to be by left-
multiplication: x ·U = xU , for all x ∈ g andU ∈ U(g). Now show that right-multiplication
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by any V ∈ U(g) defines a g-module endomorphism ϕV : U(g) → U(g), ie. define ϕV by
ϕV (U ) = UV . H

It follows that the images imϕV are submodules (left ideals) of U(g), for any V ∈ U(g).
Obviously, imϕ0 = 0 and imϕ1 = U(g).

Proposition 5.8. Given any λ ∈ g∗0, the quotient

(5.28) Vλ =
U(g)

Iλ
, where Iλ =

∑
α∈∆+

imϕeα +
rank g∑
i=1

imϕhαi−λi1,

is a highest-weight module over g with highest weight λ.

Proof. Consider the equivalence class 1 ∈ Vλ of the unit 1 ∈ U(g). The Poincaré–
Birkhoff–Witt theorem ensures that 1 is not in imϕV , whenever V is not a multiple of 1,
hence 1 is not in the sum of any such images. In particular, 1 , 0 in Vλ and explicit
computation shows that 1 is the desired highest-weight vector of Vλ:

(5.29)
eα1 = eα = 0, for all α ∈ ∆+, as eα = ϕeα (1) ∈ imϕeα ,

hαi1 = hαi = λi1 = λi1, for all i = 1, . . . , rank g, as hαi − λi1 ∈ imϕhαi−λi1.

As 1 obviously generates Vλ, this completes the proof. �

The highest-weight module Vλ constructed in this proposition is called the Verma
module of highest weight λ. It answers our first existence question in the affirmative. The
reason why we take the (sum of the) images of the ϕeα and ϕhαi−λi1 is that these images
are spanned by elements of U(g) of the form Ueα and U (hαi − λi1), respectively, both of
which annihilate a highest-weight vector.

The second, more abstract, construction requires the notion of an induced module. This
concept takes a module over a subalgebra and lifts it to a module over the full algebra
in a canonical way. The subalgebra that we will use is the universal enveloping algebra
U(b) ⊂ U(g), where b = g0 ⊕ g+ is the Borel subalgebra associated to the triangular
decomposition g = g− ⊕ g0 ⊕ g+.

We start with the one-dimensional g0-module �λ = span{v}, wherev is a weight vector
of weight λ ∈ g∗0: hαiv = λiv for all i = 1, . . . , rank g. This is extended to a b-module,
hence a U(b)-module (cf. Exercise 86), by requiring that the elements of g+ act as zero:
eαv = 0, for all α ∈ ∆+. This indeed gives �λ a b-module structure because [g0, g+] ⊆ g+.

Now comes the inducedmodule construction. We lift this one-dimensionalU(b)-module
to a U(g)-module, hence a g-module, V′

λ
by defining the latter as the tensor product

(5.30) V′λ = U(g) ⊗U(b) �λ .
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The symbol ⊗U(b) indicates that it is “permeable” to elements of U(b), rather than just to
scalars in � (cf. the complexifications introduced in Section 2.4):

(5.31) UV ⊗U(b) v = U ⊗U(b) Vv, for allU ∈ U(g) and V ∈ U(b).

As a vector space, V′
λ
may be identified with a quotient of the usual tensor product over �:

(5.32) V′λ '
U(g) ⊗� �λ

span{UV ⊗� v −U ⊗� Vv : U ∈ U(g) and V ∈ U(b)}
.

The g- and U(g)-module structures of V′
λ
are given by left-multiplication on the first factor:

U · (U ′ ⊗U(b) v) = (UU
′) ⊗U(b) v.

For experts, what’s going on here is that �λ is a left U(b)-module whilst we may regard
U(g) as a right U(b)-module under U · V = UV , where V ∈ U(b) acts on U ∈ U(g) by
right-multiplication. The tensor product U(g) ⊗U(b) �λ is then a vector space. However,
as U(g) is also a left U(g)-module and this left action commutes with the right U(b)-action
(so it is a (U(g),U(b))-bimodule), it follows that this tensor product vector space is also
naturally a left U(g)-module. Phew!

Example 54. To make the induced module construction a little less abstract, consider
g = sl(2) with the triangular decomposition sl(2)+ = span{e}, sl(2)0 = span{h} and
sl(2)− = span{ f }. Start from the trivial sl(2)0-module �0 = span{v} on which h acts as
0. Extend to a module over b = span{e,h} by letting e also act as 0. Now induce to form
the sl(2)-module V′0 = U(sl(2)) ⊗U(b) �0. Since U(sl(2)) has a Poincaré–Birkhoff–Witt
basis consisting of the monomials f ihjek , where i, j,k ∈ �>0, the module V′0 is spanned
by elements of the form f ihjek ⊗U(b) v = f i ⊗U(b) h

jekv. As these elements vanish if j or
k is positive, we have

(5.33) V′0 = span{ f i ⊗U(b) v : i ∈ �>0}

(as a vector space). The sl(2)-action is by left-multiplication so

(5.34)

f · f i ⊗U(b) v = f i+1 ⊗U(b) v,

h · f i ⊗U(b) v = f i ⊗U(b) hv + [h, f
i] ⊗U(b) v = −2f i ⊗U(b) v,

e · f i ⊗U(b) v = f i ⊗U(b) ev + [e, f
i] ⊗U(b) v = i f

i−1 ⊗U(b)
(
h − (i − 1)1

)
v

= −i(i − 1)f i−1 ⊗U(b) v,

by Exercise 35. Note that 1 ⊗U(b) v is a highest-weight vector that generates V′0 and so
V′0 is a highest-weight sl(2)-module. However, it is clearly not finite-dimensional because
the f i ⊗U(b) v, with i ∈ �>0, are linearly independent (so they form a basis of V′0). N

Exercise 94. Check if the sl(2)-module V′0 constructed in the previous example is isomor-
phic to the sl(2)-module �[z] studied in Exercises 39 and 42. H
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Exercise 95. Write down a basis for a general Verma module V′
λ
over sl(3), sp(4) and g2,

drawing the weight diagram (schematically) in each case. H

Exercise 96. Show, in general, that 1 ⊗U(b) v is always a non-zero highest-weight vector
of V′

λ
of weight λ that generates V′

λ
. In other words, show that V′

λ
is a highest-weight

module. Use the Poincaré–Birkhoff–Witt theorem to explain why V′
λ
' U(g−), as vector

spaces, and thereby write down a basis of V′
λ
. H

Exercise 97. Show that everyweight ofV′
λ
comeswith finitemultiplicity, ie. the dimension

of each weight space is finite. Explain why the multiplicity of the highest-weight vector
1 ⊗U(b) v is 1. H

The concrete and abstract answers to the existence of highest-weight modules of course
are the same. We shall therefore also refer to V′

λ
as a Verma module.

Lemma 5.9. Given any λ ∈ g∗0, we have the vector space decomposition

(5.35) U(g) = U(g−) ⊕ Iλ, Iλ =
∑
α∈∆+

imϕeα +
rank g∑
i=1

imϕhαi−λi1.

Proof. We first note that U(g+) = �1 ⊕
∑
α∈∆+ U(g+)eα , because a Poincaré–Birkhoff–

Witt basis monomial either contains a positive root vector or is 1, and similarly that
U(g0) = �1 ⊕

∑rank g
i=1 U(g0)(hαi − λi1). Exercise 88 then gives (dropping tensor product

symbols for brevity)

U(g) = U(g−)U(g0)
[
�1 ⊕

∑
α∈∆+

U(g+)eα
]
= U(g−)U(g0) ⊕

∑
α∈∆+

U(g)eα(5.36)

= U(g−)
[
�1 ⊕

rank g∑
i=1

U(g0)(hαi − λi1)
]
⊕

∑
α∈∆+

U(g)eα

= U(g−) ⊕
∑
α∈∆+

U(g)eα ⊕
rank g∑
i=1

U(g−)U(g0)(hαi − λi1).

This is almost what we want because imϕU = U(g)U , for all U ∈ U(g). We therefore
need to replace U(g−)U(g0) in the last direct summand above by U(g). Obviously,

(5.37)
rank g∑
i=1

U(g)(hαi − λi1) ⊇
rank g∑
i=1

U(g−)U(g0)(hαi − λi1).

One the other hand, we have
rank g∑
i=1

U(g)(hαi − λi1) =
rank g∑
i=1

U(g−)U(g0)
[
�1 ⊕

∑
α∈∆+

U(g+)eα
]
(hαi − λi1)(5.38)
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=

rank g∑
i=1

U(g−)U(g0)(hαi − λi1) ⊕
∑
α∈∆+

U(g)
rank g∑
i=1

(
hαi −

(
λi + 2α(hαi

)
1
)
eα

⊆
∑
α∈∆+

U(g)eα ⊕
rank g∑
i=1

U(g−)U(g0)(hαi − λi1).

It therefore follows that

(5.39)
∑
α∈∆+

U(g)eα +
rank g∑
i=1

U(g)(hαi − λi1) =
∑
α∈∆+

U(g)eα ⊕
rank g∑
i=1

U(g−)U(g0)(hαi − λi1),

completing the proof. �

Proposition 5.10. The g-modules Vλ and V′
λ
are isomorphic, for all λ ∈ g∗0.

Proof. Define a map Φ : U(g) → V′
λ
= U(g) ⊗U(b) �λ by Φ(U ) = U ⊗U(b) v, where v is

some fixed spanning element of �λ with hαiv = λiv and eαv = 0 for α ∈ ∆+. This map is
obviously linear and surjective. Moreover, it is also a g-module homomorphism:

(5.40) xΦ(U ) = x(U ⊗U(b) v) = (xU ) ⊗U(b) v = Φ(xU ), for all x ∈ g andU ∈ U(g).

Obviously, kerΦ ⊇ Iλ =
∑
α∈∆+ imϕeα +

∑rank g
i=1 imϕhαi−λi1, because both the eα and the

hαi − λi1 belong to U(b) and annihilate v. However, if this was strict, then some non-zero
element U ∈ U(g−) would belong to kerΦ, by Lemma 5.9. But, Φ(U ) = U ⊗U(b) v , 0
because Φ|U(g−) maps a Poincaré–Birkhoff–Witt basis of U(g−) to a basis of V′

λ
. Thus,

kerΦ = Iλ and so the first isomorphism theorem for modules (Proposition 2.4) gives

�(5.41) Vλ =
U(g)
kerΦ

' imΦ = V′λ .

Exercise 96 makes it clear that, no matter how one chooses to construct them, Verma
modules are infinite-dimensional. But, we said before that our goal was to classify the
finite-dimensional irreducible g-modules, for g semisimple, so devoting time to Verma
modules deserves some justification. The point of these modules are that they have the
universal property of being maximal among highest-weight modules in the sense that they
are generated from a highest-weight vector that satisfies only the requirements of being a
highest-weight vector.

Proposition 5.11. IfW is a highest-weight g-module that is generated by a highest-weight
vectorw of weight λ, then there exists a surjective g-module homomorphismψ : Vλ →W .
In other words,W is isomorphic to the quotient Vλ/kerψ .

Proof. Consider the (obviously linear) map ψ ′ : U(g) → W defined by ψ ′(U ) = Uw .
This is a surjective g-module homomorphism, since xψ ′(U ) = xUw = ψ ′(xU ) and W

is generated by w . Moreover, ψ ′ annihilates Iλ =
∑
α∈∆+ imϕeα +

∑
i imϕhαi−λi1 because
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w is a highest-weight vector. Thus, ψ ′ descends to a well-defined surjective g-module
homomorphism from Vλ = U(g)/Iλ toW . This isψ . �

Let vλ denote the generating highest-weight vector of Vλ, ie. vλ = 1 in the notation of
the proof of Proposition 5.8 and vλ = 1 ⊗U(b) v in that of Exercise 96. As a generator, vλ
cannot belong to any proper submodule of Vλ. The (frequently non-direct) sum of all the
proper submodules of Vλ is therefore still proper and so is the (unique) maximal proper
submodule of Vλ. We denote this maximal proper submodule by Jλ. By Exercise 33, Vλ
has a unique irreducible quotient Lλ = Vλ/Jλ. Moreover, the class vλ ∈ Lλ is non-zero,
hence is a highest-weight vector of weight λ. Since every irreducible highest-weight
module has a unique highest weight (Proposition 5.6), we obtain the following:

Corollary 5.12. Any irreducible highest-weight module L is isomorphic to the quotient
Lλ of Vλ, where λ is the unique highest weight of L.

We emphasise that this not only gives us a uniform construction of an irreducible highest-
weight module, for any highest weight λ ∈ g∗0, it also proves that such an irreducible
highest-weight module is unique, up to isomorphism.

Finally, we raise the (very real) possibility that a Verma module Vλ may have more than
one highest weight, ie. that there may exist a highest-weight vector wµ ∈ Vλ, of weight
µ , λ, in addition to the generating highest-weight vector vλ. If such a wµ exists, then Vλ

must be reducible by Proposition 5.6. These additional highest-weight vectors are called
singular vectors. (Of course, singular vectors can exist in modules that aren’t Verma!)

Exercise 98. Show that f λ+1vλ is a singular vector in the Verma module Vλ of sl(2)
whenever λ ∈ �>0. (Here, we are identifying λ ∈ sl(2)∗0 with its Dynkin label λ1 ∈ �.)
Identify the (isomorphism classes of the) submoduleW generated by this singular vector
and the quotient Vλ/W . H

Exercise 99. Use the Poincaré–Birkhoff–Witt Theorem to prove that a singular vectorwµ ∈

Vλ of weight µ always generates a submodule of Vλ that is isomorphic to Vµ . Conclude
that every non-zero g-module homomorphism between Verma modules is injective. H

Proposition 5.13. Let vλ be the generating highest-weight vector of the Verma module
Vλ. Then, the vectorwj = f

λj+1
α j vλ is singular in Vλ whenever the j-th Dynkin label λj is a

non-negative integer.

Proof. Suppose that λj ∈ �>0. Aswj is a weight vector (of weight λ− (λj + 1)αj), we only
need to show that eαwj = 0 for all α ∈ ∆+. However, we note that the positive root vectors
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are generated under the Lie bracket by the simple root vectors eαi , so it will be enough to
show that eαiwj = 0, for all i = 1, . . . , rank g.

When i , j, we have [eαi , fα j ] = 0 because αi − αj < ∆ (the difference of two simple
roots is never a root). Thus,

(5.42) eαiwj = eαi f
λj+1
α j vλ = f

λj+1
α j eαivλ = 0.

However, when i = j, eα j , fα j and hα j span an sl(2)-subalgebra so that eα jwj = 0 follows
from Exercise 98 and the fact that vλ is a highest-weight vector of weight λj with respect
to this subalgebra. �

Example 55. We illustrate this proposition with the Verma module V0 of sl(3). As both
Dynkin labels of the highest weight are 0, Proposition 5.13 gives two singular vectors:
w1 = fα1v0 and w2 = fα2v0. Moreover, the weight of w1 is −α1 = (−2, 1) and that of
w2 is −α2 = (1,−2). As w1 and w2 generate submodules isomorphic to Verma modules,
by Exercise 99, Proposition 5.13 gives two more singular vectors w3 = f 2

α2w1 = f 2
α2 fα1v0

and w4 = f 2
α1w2 = f 2

α1 fα2v0. Moreover, w3 and w4 have weights −α1 − 2α2 = (0,−3)
and −2α1 − α2 = (−3, 0), respectively, hence Proposition 5.13 gives two more singular
vectors w5 = fα1w3 = fα1 f

2
α2 fα1v0 and w6 = fα2w4 = fα2 f

2
α1 fα2v0. They both have weight

−2α1 − 2α2 = (−2,−2), so Proposition 5.13 generates no further singular vectors.

In fact, the last two singular vectors coincide: taking fα1 = E21, fα2 = E32 and fθ = E31

gives [fα2, fα1] = fθ and [fθ , fα1] = [fθ , fα1] = 0, hence

(5.43) fα1 f
2
α2 fα1 = fα1 fα2 fα1 fα2 + fα1 fα2 fθ = fα1 fα2 fα1 fα2 + fθ fα1 fα2 = fα2 f

2
α1 fα2 .

One can check explicitly that there are no other singular vectors lurking in the weights
spaces considered here. In fact, there are no other singular vectors in V0: we shall
see in Corollary 5.21 below that the weight µ of any such singular vector must satisfy
‖µ + θ ‖2 = ‖θ ‖2. ie., µ lies on the circle (in R) centred at −θ that passes through 0.

α1

α2 θ

· · ·

··
·

· ·
·

The only weights of V0 (blue in the above diagram) lying on this circle are those in which
we have already found a singular vector. N
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Exercise 100. Use Proposition 5.13 to find 8 singular vectors (including the highest-
weight vector) of the sp(4)-module Vα1+α2 . Use Corollary 5.21 below to argue that the
corresponding 8 weights exhaust the possible singular vector weights. H

Exercise 101. The singular vectors of Proposition 5.13 need not exhaust the singular
vectors of a Verma module. Show that the sl(3)-module V−(α1+α2)/2 has a singular vector
of weight −3

2 (α1 + α2) that is not covered by Proposition 5.13. H

A singular vector of weight µ generates a submodule of Vλ isomorphic to Vµ , by
Exercise 99. This Verma submodule may well have singular vectors generating Verma
submodules of Vµ , which will of course be submodules of Vλ, and so on. The question of
how all of these submodules are embedded into one another is interesting and important,
but far too intricate to answer here — the main keyword for those who are interested is
Kazhdan–Lusztig polynomials. Instead, we content ourselves with a simple observation.

Proposition 5.14. Every non-zero submodule of a Verma module possesses a highest-
weight vector.

Proof. Let W be a non-zero submodule and w ∈ W a non-zero element. As Verma
modules are weight modules, w may be written as a finite linear combination of weight
vectors wµ : w =

∑
µ∈Γ cµwµ for some cµ ∈ �. Here, µ is the weight of wµ and the set

Γ = {µ : cµ , 0} is finite. Choose an arbitrary weight ν ∈ Γ. Then, for each µ ∈ Γ \ {ν },
there exists Hµ ∈ g0 such that µ(Hµ) , ν (Hµ). We now consider the finite product

(5.44) U =
∏

µ∈Γ\{ν }

(Hµ − µ(Hµ)1) ∈ U(g0).

Each of the weight vectors wµ , with µ , ν , is annihilated by U ; however, wν is not. Thus,
Uw ∈W is non-zero and proportional towν . This shows thatW contains a weight vector.

But, if w ∈W is a weight vector, then its weight has the form λ −
∑

imiαi , where λ is
the (generating) highest weight of the Verma module and themi are non-negative integers.
Call the sum of themi the depth of w . Consider the action of the simple root vectors eαi
on w . If the result is 0 for all i, then w is a highest-weight vector ofW and we are done.
If the result is non-zero for some i, then we obtain a new weight vector inW whose depth
is one less than that of w . Act on this new weight vector with the eαi and repeat until we
arrive at a highest-weight vector ofW ; this is guaranteed because the depth decreases by
one with each iteration and is bounded below by 0. �

This proposition says that every non-zero submodule of a Verma module has singular
vectors. However, it doesn’t say that every non-zero submodule of a Verma module is
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generated by its singular vectors — that statement is false. Moreover, non-zero submod-
ules that are not generated by their singular vectors only appear when rank g > 3, showing
that one can’t always trust the intuition gleaned from small-rank examples.

5.5. The Weyl group and finite-dimensionality

We’ve just seen how to construct a Vermamodulewith an arbitrary highest weight λ ∈ g∗0
We’ve also shown that every irreducible highest-weight module, hence every irreducible
finite-dimensional module, can be constructed as a quotient of a Vermamodule. To answer
the question of whether all dominant integral λ ∈ P> yield finite-dimensional irreducible
quotients or not, we need another basic tool of Lie theory: the Weyl group.

Recall from Proposition 4.13 that α , β ∈ ∆ implies that β − β(α∨)α ∈ ∆. It follows that
the Weyl reflections wα , defined on g∗0 for each α ∈ ∆+ by

(5.45) wα (λ) = λ − λ(α
∨)α ,

send roots to roots, ie. they are symmetries of the root system. The name arises because
in the rational vector space R (or its real completion), wα may be identified geometrically
with the reflection about the codimension-1 hyperplane orthogonal to α :

(5.46) wα (α) = −α and wα (λ) = λ if (λ,α) = 0.

We define theWeyl group W to be the group generated by the simple Weyl reflections wαi .
(This turns out to coincide with the group generated by all the Weyl reflections, though we
will not need this fact!) Since the generators permute the roots, it follows that the Weyl
group is a subgroup of the symmetric group on ∆; in particular, W is a finite group.

Exercise 102. Check that the Weyl reflections define orthogonal linear maps on R, with
respect to the inner product (·, ·), that square to the identity. (They are thus automorphisms
of the root system.) Show that the Weyl reflections preserve the weight lattice P. H

Example 56. The Weyl group of sl(2) is generated by a single Weyl reflection wα that
maps α to −α . The Weyl group is therefore cyclic of order 2. N

Example 57. The Weyl group of sl(3) is generated by the two simple Weyl reflections
wα1 and wα2 . Since wα1wα2 maps α1 to α2 and α2 to −θ , where θ = α1 + α2, we may
identify wα1wα2 with an anticlockwise rotation by 120◦. Similarly, wα2wα1 corresponds to
a clockwise rotation by 120◦. Moreover, both wα1wα2wα1 and wα2wα1wα2 send α1 to −α2

and α2 to −α1, hence they may be identified with wθ . It follows that the Weyl group has
order 6 (it is isomorphic to the symmetric group S3).
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α1

α2 θ

Notice that W is not the full symmetry group of the root system — rotations by 60◦ are
missing for example. The full symmetry group is isomorphic to the dihedral group D6 (of
order 12). N

We remark that all elements of the Weyl group of g may be identified as inner auto-
morphisms, meaning that their action is equivalent to conjugating by an element of a Lie
group whose Lie algebra is g. The root system symmetries that are not in the Weyl group
are therefore often referred to as outer automorphisms. It turns out that the quotient of
the group of all symmetries of the root system of g by the inner automorphisms W is
isomorphic to the group of symmetries of the Dynkin diagram of g!
To illustrate this, consider the case g = sl(3) as in Example 57. The quotient D6/S3 is

clearly isomorphic to �2 which is indeed the group of symmetries of the Dynkin diagram
Γsl(3). Moreover, the non-trivial Dynkin symmetry swaps the vertices 1 and 2, whilst
swapping α1 and α2 in the root system corresponds to a reflection about the hyperplane
through θ . This is, of course, not a Weyl reflection.

It turns out that the Weyl groups of the classical Lie algebras (and g2) are fairly familiar,
whilst those of the other exceptional Lie algebras are not (though they are known explicitly).
We present the familiar cases (and the orders of all Weyl groups) in the following table.

g sl(r + 1) so(2r + 1) sp(2r ) so(2r ) g2

W Sr+1 Sr n �
r
2 Sr n �

r
2 Sr n �

r−1
2 D6

|W| (r + 1)! 2rr ! 2rr ! 2r−1r ! 12
For completeness, the orders of the Weyl groups of f4, e6, e7 and e8 are 1152, 51840,
2903040 and 696729600, respectively.

Don’t worry if you don’t know what a “semidirect product” n is — we won’t be using
these identifications in what follows. To do so, we’d also need to know how these abstract
groups act on the root system and this isn’t always obvious. It’s a beautiful story of course
and you can read about it at length in (eg.) the books of Fulton and Harris or Humphreys.

Exercise 103.

• Use the root systems of so(4), sp(4), and g2 to verify their Weyl groups. In each case,
determine the minimalm ∈ �>0 such that (wα1wα2)

m is the identity.



104 D RIDOUT

• Compute the root system of sp(6) and determine the action of the simpleWeyl reflections
on it. Again, compute the minimalmij ∈ �>0 such that (wαiwα j )

mi j is the identity. H

As you can see, the Weyl group explains the beautiful symmetries we have observed
in the root diagrams. We have also observed symmetries in the weight diagrams of the
finite-dimensional irreducible modules (though not in those of the infinite-dimensional
Verma modules). In fact, these symmetries are also manifestations of the Weyl group: W
permutes the weights of any given finite-dimensional module. This is the key to proving
the finite-dimensionality of the irreducible highest-weight modules with dominant integral
highest weights and, as always, the argument reduces to sl(2)-theory.
Recall that for sl(2), the simple root is α = (2), the simple coroot is α∨ = h and

a weight λ = (λ) is mapped by the single Weyl reflection to λ − λ(H )α = −λ. Since
every finite-dimensional sl(2)-module is a direct sum of irreducibles (Theorem 3.5) and
every finite-dimensional irreducible sl(2)-module has weights λ, λ − 2, . . . ,−λ + 2,−λ
(Theorem 3.1 and Example 47), it follows that the weights of any finite-dimensional
sl(2)-module are permuted by the action of the Weyl group.

Lemma 5.15. When λ ∈ P>, the weights of the irreducible highest weight g-module Lλ

are permuted by W.

Proof. Let v be the highest-weight vector of Lλ and v′ the highest-weight vector of its
Verma cover Vλ, guaranteed to exist by Corollary 5.12. Since λ is dominant integral, the
vectors f λi+1

αi v′ are singular in Vλ for each i, by Proposition 5.13, hence they generate non-
zero proper submodules. These submodules are set to zero in constructing the irreducible
quotient Lλ, so f λi+1

αi v = 0 in Lλ, for all i = 1, . . . , rank g.
It follows that for each i, the subspace of Lλ spanned by the f nαiv, with n = 0, 1, . . . , λi ,

is a finite-dimensional module for the sl(2)-subalgebra spanned by eαi , hαi and fαi . We
will denote this subalgebra by sl(2)i for convenience. We conclude that for each i, the set
of finite-dimensional sl(2)i-submodules of Lλ is not empty.
Fix i and let Mi be the sum of all the finite-dimensional sl(2)i-submodules of Lλ. We

have just shown that Mi is non-zero, so if we can show that it is a g-module, then it will
follow that Mi = Lλ, by irreducibility. Consider therefore an arbitrary finite-dimensional
sl(2)i-submoduleW ⊆ Lλ. Then, the subspace

(5.47) W ′ = span{yw : y ∈ g andw ∈W }

is a sl(2)i-submodule of Lλ because x ∈ sl(2)i gives x(yw) = y(xw) + [x ,y]w ∈ W ′.
Moreover, the dimension of W ′ is finite, being bounded above by dim g dimW . Thus,
acting with y ∈ g maps each finite-dimensional sl(2)i-submoduleW into another one: W ′.
Mi is therefore a g-module, hence it coincides with Lλ for each i = 1, . . . , rank g.
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In other words, Lλ is, for each i, a sum of finite-dimensional sl(2)i-submodules. Since
the weights of such a submodule are permuted by the simple Weyl reflection wαi , we
conclude that the weights of Lλ are likewise permuted by each wαi . But, as this is true for
each i, and as W is generated by the wαi , it follows that the weights of Lλ are permuted by
the Weyl group of g. �

Corollary 5.16. The weights of any finite-dimensional g-module are permuted by W.

This permutation result will allow us to complete the classification of finite-dimensional
irreducible g-modules. The following theorem is the generalisation of Theorem 3.1 from
sl(2) to general (finite-dimensional complex) semisimple Lie algebras g.

Theorem 5.17. The irreducible g-module Lλ is finite-dimensional if and only if λ ∈ P>.

Proof. We’ve already shown that finite-dimensionality implies the dominant integral con-
dition (Corollary 5.7). We therefore assume that λ ∈ P>.

Since any weight µ of Lλ differs from λ by an element of the root lattice Q ⊆ P
(Proposition 5.2), it is integral: µ ∈ P. The set of weights of Lλ is also permuted by W
(Lemma 5.15), so it decomposes into orbits W(µ) = {w(µ) : w ∈ W} ⊂ P under the Weyl
group action. Moreover, these orbits are finite sets, as W is finite, and so have maximal
elements (for any reasonable definition of “maximal”). We say that ν ∈ W(µ) is maximal
if for all ν ′ ∈ W(µ), ν ′−ν is not a non-negative integer linear combination of simple roots:
ν ′ − ν < Q>.

Now, if ν is not dominant integral, ie. ν < P>, then νi < 0 for some i, so

(5.48) wαi (ν ) − ν = −ν (α
∨
i )αi = |νi |αi ∈ Q>

and thus ν is not maximal. We conclude that maximal weights in a Weyl group orbit are
dominant integral; every Weyl group orbit therefore includes a dominant integral weight.

Howmany dominant integral weights canLλ have? Well, µ ∈ P> implies thatλ+µ ∈ P>,
so λi + µi ∈ �>0 for all i, and λ − µ ∈ Q>, so λ − µ =

∑
jmjαj for somemj ∈ �>0. Thus,

(5.49) (λ + µ, λ − µ) =
rank g∑
i,j=1
(λi + µi)mj(ωi ,αj) =

1
2

rank g∑
i=1
(λi + µi)mi ‖αi ‖

2 > 0.

However, (λ + µ, λ − µ) = ‖λ‖2 − ‖µ‖2, hence we must have ‖µ‖2 6 ‖λ‖2. Now, the disc
‖µ‖2 6 ‖λ‖2 is compact and P> is discrete, so their intersection is finite. But, if there are
only finitely many dominant integral weights in Lλ, then there can only be finitely many
weights in Lλ because every Weyl group orbit is finite and contains at least one dominant
integral weight. Finally, the dimension of every weight space of Lλ is bounded above the
dimension of the corresponding weight space of its Verma cover Vλ, which is finite by
Exercise 97. We therefore conclude that Lλ is a finite-dimensional g-module. �
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Corollary 5.18. The irreducible finite-dimensional g-modules are classified, up to iso-
morphism, by the set P> of dominant integral weights.

We close this section with a bit more fun that one can have with the Weyl group. The
Weyl vector ρ is an interesting weight that arises in many places (eg. in Proposition 5.20
below). It’s defined as half the sum of the positive roots:

(5.50) ρ =
1
2

∑
α∈∆+

α .

With this definition, it looks unlikely to be an element of the root lattice Q or even the
weight lattice P. Nevertheless, we can compute the Dynkin labels of ρ in various cases:

• sl(2) has ∆+ = {(2)}, hence ρ = (1).
• sl(3) has ∆+ = {(2,−1), (−1, 2), (1, 1)}, hence ρ = (1, 1).
• sp(4) has ∆+ = {(2,−1), (−2, 2), (0, 1), (2, 0)}, hence ρ = (1, 1).
• g2 has ∆+ = {(2,−3), (−1, 2), (1,−1), (0, 1), (−1, 3), (1, 0)}, hence ρ = (1, 1).
• so(7) has

∆+ = {(2,−1, 0), (−1, 2,−2), (0,−1, 2), (1, 1,−2),(5.51)

(−1, 1, 0), (1, 0, 0), (−1, 0, 2), (1,−1, 2), (0, 1, 0)} ,

hence ρ = (1, 1, 1).

It sure looks like ρ is in fact the element
∑

i ωi of P>. This can obviously be checked for
all the classical Lie algebras by exhaustive and explicit computation, but it’s much nicer
to have an elegant proof.

Exercise 104. In this exercise, we show that

(5.52)
1
2

∑
α∈∆+

α = ρ =
rank g∑
i=1

ωi .

(a) Explain why the only point fixed by all of the simpleWeyl reflections wαi is the origin.
(b) Compute wαi (αj) for each i, j and conclude that wαi permutes the set ∆+ \ {αi}.
(c) Compute the action of each wαi on ρ = 1

2
∑
α∈∆+ α and ρ′ =

∑
i ωi .

(d) Conclude that ρ = ρ′. H

Of course, there’s always more than one way to skin a cat. We shall encounter a second
way to demonstrate (5.52) shortly (see Exercise 111 below).

5.6. The quadratic Casimir
In Section 3.2, we introduced the quadratic Casimir of sl(2) as a tool to help proveWeyl’s

complete reducibility theorem (Theorem 3.5) for finite-dimensional sl(2)-modules. Recall
that it was defined as a linear operator acting on an arbitrary sl(2)-module. Now that we
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have more sophisticated tools up our sleeves, we can redefine the quadratic Casimir as an
element of its true home: the universal enveloping algebra of sl(2). This also provides us
with an opportunity to define the quadratic Casimir of a general semisimple Lie algebra
g as an element of U(g), in preparation for proving Weyl’s theorem for finite-dimensional
g-modules (Theorem 5.23 below).

Recall from Exercise 15 that the centre z(g) of a Lie algebra g is an abelian ideal,
hence is 0 for all semisimple g. In a way, this is a pity because non-trivial central
elements are extremely useful in representation theory. However, Exercise 86 shows that
the representation theories of g and U(g) are identical and nothing to date has said anything
about central elements of U(g) (except multiples of the unit 1 which act predictably).

Let Z(g) denote the centre of U(g). This consists of the Z ∈ U(g) such that ZU = UZ ,
for all U ∈ U(g). As U(g) is generated by g (embedded into U(g) by the canonical map of
Theorem 5.5), it suffices to check that Zx = xZ for all x ∈ g. Note that Z(g) is an abelian
(unital associative) subalgebra of U(g).
Each Z ∈ Z(g) then defines a g-module endomorphism on any g-module V :

(5.53) xZv = Zxv, for all x ∈ g and v ∈ V .

(Here, we have identified g-modules with U(g)-modules for simplicity.) IfV happens to be
irreducible and finite-dimensional, then each Z ∈ Z(g) acts on V as some multiple χV (Z )
of the identity operator, by Schur’s lemma (Lemma 3.3). Since Z always acts linearly,
it follows that χV is a linear functional on Z(g), ie. χV ∈ Z(g)∗. χV is called the central
character of the g-module V .
If two g-modules are isomorphic, then they have the same central characters. The central

character is thus an invariant of irreducible finite-dimensional g-modules and so may be
used to distinguish them. It is often important to extend this to more general classes of
g-modules. To this end, let us say that an arbitrary g-module admits a central character if
every Z ∈ Z(g) acts on it as a multiple of the identity.

Exercise 105. Prove if V andW are isomorphic g-modules that admit central characters,
then their central characters coincide as elements of Z(g)∗. H

We remark that each Z ∈ Z(g) has a single eigenvalue when acting on any finite-
dimensional indecomposable g-module, by Lemma 3.2, but this does not mean that the
module admits a central character because some of the Z might act non-diagonalisably.

A g-module, not necessarily finite-dimensional or irreducible, is said to be cyclic if it is
generated by a single element (cf. a cyclic group), called a cyclic vector. All irreducible
modules are cyclic, with any non-zero vector qualifying as a cyclic vector. On the other
hand, Verma modules (and highest-weight modules in general) are also examples of cyclic
modules with the (generating) highest-weight vector as cyclic vector.
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Exercise 106. Generalise Schur’s lemma (Lemma 3.3) by proving the following result:

Let V be a cyclic g-module whose cyclic vector is an eigenvector of a g-module endo-
morphism Q . Then, Q acts as a multiple of the identity on V . H

A convenient fact for representation theory is that it isn’t too difficult to construct a
quadratic (ie. of tensor degree 2) element of Z(g), if one has an non-degenerate invariant
bilinear form κ. Let {xi} denote a basis of g and let {yj} denote the dual basis with respect
to κ:

(5.54) κ(xi ,yj) = δij .

We now define the quadratic Casimir of g to be the element

(5.55) Q =
dim g∑
i=1

xiyi ∈ U(g).

Recall that when g is simple, every non-degenerate invariant bilinear form is proportional
to the Killing form (Exercise 54). This is reflected in the (obvious) fact that Q may be
rescaled.

Exercise 107. Prove that Q does not depend upon the choice of basis {xi}. H

We remark that it is often convenient to rewrite the quadratic Casimir in the somewhat
more explicit form

(5.56) Q =
∑
i,j

κ−1(xi ,xj)xixj ,

where κ−1(·, ·) denotes the bilinear form whose representing matrix (with respect to an
arbitrary basis of g) is the inverse of that of κ.

Example 58. For g = sl(2), we may choose the standard basis {e,h, f } and take κ to be
the Killing form. We computed the matrix representative of κ, with respect to this basis,
in Example 31, so the inverse is easily determined:

(5.57) κ =
©­­«
0 0 4
0 8 0
4 0 0

ª®®¬ ⇒ κ−1 =
©­­«
0 0 1

4
0 1

8 0
1
4 0 0

ª®®¬ .
The quadratic Casimir of sl(2) is therefore

(5.58) Q =
1
8
h2 +

1
4
e f +

1
4
f e =

1
4

(
1
2
h2 + e f + f e

)
∈ U(sl(2)).
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Note that if we replace the Killing form by the trace form in the defining representation π
(see Example 22), then

(5.59) κπ (h,h) = tr

(
1 0
0 −1

)2

= 2

shows that κπ = 1
4κ, hence κ

−1
π = 4κ−1 and soQ would be multiplied by 4. In this way, we

recover the definition of the quadratic Casimir of sl(2) used in Section 3.2 (but as an element
of U(sl(2)), rather than as a linear operator acting on an arbitrary sl(2)-module). N

Exercise 108. Compute the quadratic Casimirs of sl(3) and sp(4) explicitly, in both cases
taking κ to be the trace form in the defining representation. H

Proposition 5.19. Let g be a Lie algebra with a non-degenerate invariant bilinear form κ.
Then, the quadratic Casimir is central: Q ∈ Z(g).

Proof. Choose dual bases {xi} and {yi} of g, with respect to κ. Given z ∈ g, let (aij) and
(bij) denote the matrix representatives of ad(z) with respect to the xi and yi , respectively:

(5.60) [z,xi] =
∑
j

aijxj and [z,yi] =
∑
j

bijyj , for some aij ,bij ∈ �.

The entries of these matrices are related by the invariance of κ:

(5.61) bij =
∑
k

bikκ(xj ,yk) = κ(xj , [z,yi]) = −κ([z,xj],yi) = −
∑
k

ajkκ(xk ,yi) = −aji .

With this relation, we now compute that for any z ∈ g,

[z,Q] =
∑
i

[z,xiyi] =
∑
i

([z,xi]yi + xi[z,yi]) =
∑
i,j

(aijxjyi + bijxiyj)(5.62)

=
∑
i,j

(aji + bij)xiyj = 0. �

Exercise 109. Prove that the eigenvalue ofQ on the adjoint module of a simple Lie algebra
is 1. Be careful not to fall into the trap of thinking that ad(Q)x = [Q,x] = 0. [Hint: what
happens if you take the trace of ad(Q)?] H

It is interesting to note that when rank g > 1, ie. when g ; sl(2), there are other
algebraically independent elements in Z(g) (meaning elements that are not polynomials
in 1 and Q). For example, sl(3) has a cubic Casimir that plays an occasional role in
quantum chromodynamics calculations. In general, Z(g) is a polynomial algebra in rank g
algebraically independent generators, known as the Casimir elements of g. Their degrees
di (as polynomials) define the exponents ei of g by di = ei + 1. These exponents appear
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mysteriously in such places as heights of roots, eigenvalues of Dynkin diagram adjacency
matrices and even the cardinality of the Weyl group.

Be that as it may, one of the first things we did in Section 3.2 with the quadratic Casimir
of sl(2) was to explicitly determine its eigenvalues on the finite-dimensional irreducible
sl(2)-modules Lλ, λ ∈ �>0. We did this by acting on an h-eigenvector (a weight vector)
which was annihilated by e (so a highest-weight vector), see Equation (3.18). Our next
task is to generalise this to the quadratic Casimir of an arbitrary semisimple Lie algebra g
and evaluate its action on an arbitrary highest-weight vector. For this, we recall the Weyl
vector ρ ∈ g∗0, defined in (5.50) as half the sum of the positive roots.

Proposition 5.20. The eigenvalue of the quadratic Casimir Q on a highest-weight vector
of weight λ is (λ, λ + 2ρ).

Proof. We work in the basis of simple coroots α∨i , i = 1, . . . , rank g, and root vectors eα
and fα , α ∈ ∆+. As the Killing form is block-diagonal in this basis (Lemma 4.7), finding
the dual basis is straightforward. First, note that the dual basis of {eα , fα } is

(5.63)
{
‖α ‖2

2
fα ,
‖α ‖2

2
eα

}
,

by Equation (4.53). Moreover, (5.5) gives

(5.64) κ(ι−1(ωi),α
∨
j ) = ωi(α

∨
j ) = δij ,

hence the basis of g0 dual to the simple coroots α∨i is given by the ι−1(ωi), i = 1, . . . , rank g.
The dual basis of g is thus given by the ι−1(ωi) and the elements of (5.63), for α ∈ ∆+.
Let the calculation begin! We substitute these bases into the definition (5.55) of Q:

Q =
∑
i

α∨i ι
−1(ωi) +

∑
α∈∆+

‖α ‖2

2
(eα fα + fαeα )(5.65)

=
∑
i

α∨i ι
−1(ωi) +

∑
α∈∆+

‖α ‖2

2
α∨ +

∑
α∈∆+

‖α ‖2 fαeα

=
∑
i

α∨i ι
−1(ωi) +

∑
α∈∆+

ι−1(α) +
∑
α∈∆+

‖α ‖2 fαeα

=
∑
i

α∨i ι
−1(ωi) + 2ι−1(ρ) +

∑
α∈∆+

‖α ‖2 fαeα .

EvaluatingQ on a highest-weight vector v of weight λ, we note that the third term gives 0
and we are left with

Qv =

[∑
i

λ
(
α∨i

)
λ
(
ι−1(ωi)

)
+ 2λ

(
ι−1(ρ)

) ]
v =

[∑
i

λi(λ,ωi) + 2(λ, ρ)
]
v(5.66)

=

[
(λ,

∑
i

λiωi) + (λ, 2ρ)
]
v = (λ, λ + 2ρ)v . �
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Corollary 5.21. If V is an indecomposable g-module with two singular vectors (highest-
weight vectors) of weights λ and µ, then ‖λ + ρ‖2 = ‖µ + ρ‖2.

Exercise 110. Combine this result with Proposition 5.14 to conclude that the Verma
module V−ρ is irreducible. H

Exercise 111. Recall from Proposition 5.13 that Vλ has a Verma submodule isomorphic
to Vλ−(λj+1)α j whenever λj ∈ �>0. Combine this with Exercise 106 and Proposition 5.20
to conclude that the Dynkin labels of the Weyl vector ρ are all 1. H

Exercise 112.

(a) Show that the irreducible highest-weight module L0 is 1-dimensional and trivial.
(b) Prove that the quadratic Casimir Q acts as zero on a finite-dimensional irreducible
g-module V if and only if V is trivial. H

Of course, Q would also act as 0 on any irreducible g-module with λ = −2ρ as a highest
weight, but such a module is not finite-dimensional (cf. Exercise 90).

We recall that a simple Lie algebra possesses a unique highest root, traditionally denoted
by θ . This was mentioned in Exercise 80, but now follows easily from Example 24
and Proposition 5.6. There is a standard convention for simple Lie algebras, mentioned
several times already, which normalises the highest root so that ‖θ ‖2 = 2. As we have
discussed, this may be achieved by rescaling the Killing form (cf. Exercise 80).

From now on, the bilinear forms κ(·, ·) and (·, ·), as well as the isomorphism ι : g0 → g∗0
will be rescaled so that ‖θ ‖2 = 2. When we wish to refer to the original Killing form and
the form it induces on g∗0, we shall use the notation κad(·, ·) and (·, ·)ad instead. Similarly,
the original isomorphism shall now be denoted by ιad.

Corollary 5.22. The convention ‖θ ‖2 = 2 corresponds to rescaling the Killing form κad

of g to

(5.67) κ =
1

2h∨
κad,

where h∨ = 1 + (θ , ρ) is called the dual Coxeter number of g.

Proof. We start by noting that setting κ = ζκad, for some non-zero ζ ∈ �, implies that
ι = ζ ιad and so (·, ·) = ζ −1(·, ·)ad, see Equation (4.41) and Exercise 65. Imposing (θ ,θ ) = 2
then requires that

(5.68) 2 = ζ −1(θ ,θ )ad = ζ
−1(1 − 2(θ , ρ)ad) = ζ

−1 − 2(θ , ρ) ⇒ ζ −1 = 2(1 + (θ , ρ)),

because Exercise 109 and Proposition 5.20 give (θ ,θ )ad + 2(θ , ρ)ad = 1. �



112 D RIDOUT

Given ‖θ ‖2 = 2, as above, we can explicitly compute the value of the dual Coxeter number
of each simple Lie algebra by writing θ =

∑
i aiαi or θ∨ =

∑
i a
∨
i α
∨
i and noting that

(5.69a) h∨ = 1 +
rank g∑
i=1

a∨i = 1 +
rank g∑
i=1

‖αi ‖
2

2
ai .

The ai and a∨i are called the marks and comarks of g, respectively. These numbers play a
passing role in the theory of semisimple Lie algebras, but really come into their own when
one generalises to the closely related (infinite-dimensional) affine Kac–Moody algebras
that arise in mathematical physics (conformal field theory, string theory, etc.).

The name “dual Coxeter number” suggests that there is also a Coxeter number h asso-
ciated to each simple Lie algebra g. There is, of course, and it is defined by

(5.69b) h = 1 +
∑
i

ai = 1 +
rank g∑
i=1

2
‖αi ‖2

a∨i ,

ie. it is one plus the height of θ , cf. (4.94). The Coxeter number also turns out to be one
plus the largest exponent of g and is equal to the number of roots divided by the rank.
Unlike the dual Coxeter number, the Coxeter number is secretly an invariant of the Weyl
group of g (the fact that Weyl groups are examples of Coxeter groups gives a hint about
the naming).

We tabulate the Coxeter and dual Coxeter numbers of the simple Lie algebras for
convenience.

g sl(r + 1) so(2r + 1) sp(2r ) so(2r ) e6 e7 e8 f4 g2

h r + 1 2r 2r 2r − 2 12 18 30 12 6
h∨ r + 1 2r − 1 r + 1 2r − 2 12 18 30 9 4

Of course, they coincide if g is simply laced (ie. its Dynkin diagram has no arrows). You
might wish to compare the quoted values of h∨ with your answers for Exercise 80.

We conclude by noting a convenient consequence of setting ‖θ ‖2 = 2: the ratio 2
‖α ‖2

that appears in the definition (4.54) of the coroot α∨ is now constrained to lie in the set
{1, 2, 3}, by Proposition 4.16. Indeed, if g is simply laced, then all roots have the same
length and so this ratio is always 1.

To see an example of this computational convenience, suppose that we had need to
explicitly compute (λ, µ), for λ, µ ∈ g0, directly from the Dynkin labels of λ and µ. If
we let ®λ and ®µ denote the column vectors consisting of the Dynkin labels of λ and µ,
respectively, then we would have

(5.70) (λ, µ) =
rank g∑
i,j=1

λi(ωi ,ωj)µj = ®λ
ᵀG®µ,

where G is the matrix whose (i, j)-th entry is (ωi ,ωj). It is thus the Gram matrix of the
bilinear form (·, ·) in the basis of fundamental weights. Because this basis is dual to the
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basis of g0 consisting of the simple coroots, G is the inverse of the Gram matrix Å of κ(·, ·)
in this simple coroot basis. However, Å is just a symmetrisation of the Cartan matrix A
obtained by multiplying each column by an appropriate integer:

(5.71) Åij = κ(α
∨
i ,α

∨
j ) =

2
‖αj ‖2

αj(α
∨
i ) =

2
‖αj ‖2

Aij .

Having small integers for the ratios 2
‖α ‖2

is certainly nice for such explicit computations.

Example 59. Because α1 is a short root of sp(4), whilst α2 is long, the symmetrisation of
the Cartan matrix is obtained by multiplying the first column by 2

‖α1‖2
= 2:

(5.72) A =

(
2 −2
−1 2

)
⇒ Å =

(
4 −2
−2 2

)
⇒ G =

1
2

(
1 1
1 2

)
.

It is thus easy to compute, for example, that

(5.73)

‖α1‖
2 = ®α1

ᵀG ®α1 =
(
2 −1

) 1
2

(
1 1
1 2

) (
2
−1

)
= 1,

(α1,α2) = ®α1
ᵀG ®α2 =

(
2 −1

) 1
2

(
1 1
1 2

) (
−2
2

)
= −1,

‖α2‖
2 = ®α2

ᵀG ®α2 =
(
−2 2

) 1
2

(
1 1
1 2

) (
−2
2

)
= 2,

hence that the angle between the two simple roots is 135◦, as in Example 37. N

Exercise 113. Compute the Gram matrix G for each of the classical simple Lie algebras.
H

5.7. Weyl’s theorem: complete reducibility
It’s finally time to generalise Theorem 3.5 from sl(2) to a general semisimple Lie algebra

g and thereby demonstrateWeyl’s theorem: that all finite-dimensional g-modules are com-
pletely reducible. The analogous statement for finite groups, or rather the corresponding
complex group algebras, is called Maschke’s Theorem and it is proved using an averaging
trick. Weyl’s original proof copied this by setting up the same averaging trick, but on the
(connected, simply-connected) compact Lie group whose Lie algebra is g. We don’t have
the luxury of introducing integration on compact Lie groups, nor to discuss averaging with
respect to their invariant (Haar) measures. There is a purely algebraic proof due to Brauer.
However, it is rather involved, and we are somewhat pressed for time, so we’ll omit it.

To hint at the difficulties involved, recall from Section 3.2 that in proving Weyl’s theo-
rem for sl(2), we exploited the fact that the eigenvalue of the quadratic Casimir completely
distinguished the finite-dimensional irreducible sl(2)-modules, up to isomorphism. Un-
fortunately, the same is not true for general g, so one has to work much harder.
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Exercise 114. Show that the eigenvalue of the quadratic Casimir on the defining sl(3)-
module coincides with that on the dual of the defining module. Explain why this defining
module and its dual cannot be isomorphic. H

In fact, it turns out that finite-dimensional irreducible g-modules are completely dis-
tinguished by their central characters, suggesting yet another algebraic path to generalise
the proof of Weyl’s theorem we gave for sl(2). However, this requires delving much more
deeply into the beautiful world of semisimple Lie algebras than we have time for (keyword:
Harish-Chandra homomorphism). We shall therefore have to content ourselves with just
stating Weyl’s theorem.

Theorem 5.23 (Weyl). Every finite-dimensional module V of a (finite-dimensional com-
plex) semisimple Lie algebra g is completely reducible.

It is perhaps a little easy to overlook the importance ofWeyl’s Theorem in the theoretical
development that we are following. So let us emphasise that the complete reducibility of
the finite-dimensional g-modules is the best news that we could possibly have hoped for,
both on theoretical and practical grounds. When the representations of a given algebraic
structure are not completely reducible, then life becomes significantly more difficult very
quickly. In fact, it can be shown (in a rigorous sense) that one will usually not be able
to classify the modules. And without a solid formalism for working with representations,
one may well be left with inefficient “brute-force” methods to tackle practical calculations.

To give a sense for how Weyl’s theorem can simplify calculations, we present some
examples in the next section that detail how one can decompose the tensor product of
irreducible g-modules into irreducible g-modules. Themethod presented is not particularly
efficient — much better methods are available, particularly when g is classical (names
include Clebsch–Gordan, Littlewood–Richardson and Schur–Weyl)— but it is illustrative.
Andwould bemuchmuch harder ifwe didn’t know that the result was completely reducible.

We conclude this section with a simple theoretical application of Weyl’s theorem to the
relationship between irreducibility and finite-dimensionality.

Lemma 5.24. Every finite-dimensional highest-weight module of highest weight λ is
isomorphic to the irreducible Lλ.

Proof. Every highest-weight module with highest weight λ is isomorphic to a (non-zero)
quotient of the Verma module Vλ, by Proposition 5.11. Being finite-dimensional, this
quotient is a direct sum of irreducible highest-weight modules, by Weyl’s theorem. As
λ has multiplicity 1 in Vλ (Exercise 97), it has multiplicity 1 in the quotient as well. It
follows that only one of the irreducibles in the direct sum decomposition may have λ as
a weight. However, the quotient is clearly generated by the image of the highest-weight
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vector v ∈ Vλ of weight λ, so the direct sum can only be this irreducible module, ie. the
quotient is irreducible. As it is a quotient of Vλ, it is therefore Lλ, by Corollary 5.12. �

This simple observation has a rather neat application to the identification of the maximal
proper submodule Jλ of Vλ, cf. Section 5.4, when λ ∈ P>. For this, we need two additional
ingredients. First, we need the following identity (the proof is an exercise of course).

Exercise 115. Consider an associative algebra in which we define linear endomorphisms
ad(U ) by ad(U )V = [U ,V ] = UV −VU (note that this does not make ad into an associative
algebra homomorphism). Prove the following identity for all positive integers n:

H(5.74) [U n,V ] =
n∑

k=1

(
n

k

)
ad(U )kV ·U n−k .

The second ingredient is to remark that as g is finite-dimensional, each ad(eα ), α ∈ ∆,
defines a nilpotent endomorphism of the adjoint module. There are only finitely many
roots, so for α , β ∈ ∆, we must have β + nα < ∆ for all n sufficiently large (ie. root strings
are finite), hence ad(eα )neβ = 0 for such n (cf. Serre’s theorem— Theorem 4.24 — for the
simple root case). As there are only finitely many roots, we can therefore choose N so that

(5.75) ad(eα )Neβ = 0, for all α , β ∈ ∆.

Theorem 5.25. For λ ∈ P>, Jλ is generated by the singular vectors f λi+1
αi v, where v ∈ Vλ

is the highest-weight vector of weight λ and i = 1, . . . , rank g. In other words,

(5.76) Lλ '
Vλ∑rank g

i=1 Vλ−(λi+1)αi
.

Proof. The aim is to show that the (obviously non-zero) quotient on the right-hand side of
(5.76) is finite-dimensional. Then, it is isomorphic to Lλ, by Lemma 5.24.

To demonstrate this finite-dimensionality, we show that the quotient is a sum of finite-
dimensional sl(2)i-modules, for each i = 1, . . . , rank g, as in the proof of Lemma 5.15. Its
weights are thus permuted by W and so the finite-dimensionality follows as in the proof
of Theorem 5.17. Here, sl(2)i denotes the subalgebra of g spanned by eαi , hαi and fαi .
To demonstrate that the sl(2)i-modules are finite-dimensional, we will show that for each
vector w in a Poincaré–Birkhoff–Witt basis of Vλ, there exists n such that f nαiw is zero in
the quotient. Since the corresponding statement with fαi replaced by eαi is always true
(because the quotient is a highest-weight module), this will show that each basis vector
generates a finite-dimensional sl(2)i-module.

Consider therefore a Poincaré–Birkhoff–Witt basis vectorw = fβm · · · fβ1v ∈ Vλ, where
β1, . . . , βm ∈ ∆+. We show that w is annihilated by a sufficiently high power of fαi by
induction on m. If m = 0, then w = v is annihilated by the f λi+1

αi , by definition of



116 D RIDOUT

the quotient module. So, we may assume that there exists n such that f nαi annihilates
fβ` · · · fβ1v, for all ` < m. It follows then that

f n+Nαi w = f n+Nαi fβm · · · fβ1v =
m∑
j=1

fβm · · · [f
n+N
αi , fβj ] · · · fβ1v(5.77)

=

m∑
j=1

fβm · · ·
n+N∑
k=1

(
n + N

k

)
ad(fαi )

k fβj · f
n+N−k
αi fβj−1 · · · fβ1v,(5.78)

by (5.74). However, (5.75) now truncates the second sum so that

f n+Nαi w =
m∑
j=1

fβm · · ·
N−1∑
k=1

(
n + N

k

)
ad(fαi )

k fβj · f
n+N−k
αi fβj−1 · · · fβ1v .(5.79)

As n +N − k > n and j − 1 < m, f n+N−kαi fβj−1 · · · fβ1v = by the induction hypothesis. This
completes the induction and thus also the proof. �

5.8. An application to quantum field theory
One raison d’être of quantum field theory is to explain the fundamental features of

particle physics. In the first half of the twentieth century, physicists were quite happy
with their particles. They had convincingly demonstrated that atoms were composed of
electrons, protons and neutrons and, aside from predictions of such beasties as neutrinos
(by Pauli) and pions (by Yukawa) and the inconvenient discovery of the muon (Rabi:
“Who ordered that?”), that seemed to be that.

However, the late forties and fifties saw an unprecedented increase in funding for
fundamental physics, probably as a result of the somewhat uncomfortable role it played
in the second world war. This led to the discovery, first in cosmic rays and then later in
cyclotrons and other accelerators, of three different pions, four completely new particles
called kaons, as well as the eta meson and the lambda baryon, among others.

Even while physicists were failing to come up with cool names for all these unexpected
new particles, efforts were underway tomeasure their properties and bring some semblance
of order to them. As it turned out, a significant part of this order derived from the finite-
dimensional representation theory of the complex Lie algebra sl(3) (which is the same as
the finite-dimensional representation theory of the real Lie algebra su(3) and the compact
real Lie group SU(3)).

Physicists had long been accustomed to distinguishing elementary particles by their
isospins, a term introduced by Heisenberg to quantify (in terms of symmetry) the dif-
ference between protons and neutrons. The name “isospin” was chosen to reflect its
mathematical formulation in terms of finite-dimensional sl(2)-modules. For example,
protons and neutrons together span a 2-dimensional fundamental sl(2)-module with the
proton representing the quantum state of isospin +1

2 and the neutron being its isospin −1
2

partner (recall that physicists define quantum spin as half theh-eigenvalue). To understand
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the rapidly growing “particle zoo” being discovered, physicists then added a second scalar
quantity to distinguish particles which they imaginatively called the hypercharge.

Two scalar eigenvalues means, when interpreted in the language of semisimple Lie
theory, a 2-dimensional Cartan subalgebra. Indeed, Gell-Mann and Ne’eman indepen-
dently realised in the early sixties that the particle zoo could be naturally described in
terms of certain representations of sl(3). In particular, they found that the operators
whose eigenvalues gave the isospin and hypercharge could be assigned to the (orthogonal)
Cartan elements 1

2hα1 and 1
3 (hα1 + 2hα2) = ι

−1(ω2), respectively. We indicate where the
isospins and hypercharges of these fundamental particles fall on our familiar pictures of
the (rational or real) inner product space R ⊂ sl(3)∗0.

η′ π+

K+K0

π−

K− K̄0

π 0 η

Σ+

pn

Σ−

Ξ− Ξ0

Σ0 Λ Σ∗+

∆++
∆+∆0

∆−

Σ∗−

Ξ∗− Ξ∗0

Ω−

Σ∗0

Here, p and n denote the proton and the neutron, respectively. You can guess the unimag-
inative names of the other particles or look them up. Note that there are also distinct
antiparticles for the particles in the second row that lead to sl(3)-modules that are the
duals of those indicated. Note also that the fanciful notion of hypercharge is actually
somewhat redundant as one can replace it by the electric charge of the particle, given by
the eigenvalue of ι−1(ω1) =

1
3 (2hα1 + hα2), which is not orthogonal to isospin.

This observed (but by no means understood) sl(3)-symmetry is called flavour symmetry
by physicists to distinguish it from colour symmetry (which is also associated with sl(3)).
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Because the masses of the particles in the diagrams can be quite different, it is an “approx-
imate” or “broken” symmetry of nature, at least at the energy scales that our experiments
can access. Nevertheless, this flavour symmetry allowed Gell-Mann to predict the exis-
tence of the Ω− particle, which at the time had not been discovered, and its mass. Its
subsequent discovery was the confirmation of the role of sl(3) in particle physics, earning
him the 1969 Nobel prize in physics. Some refer to this classification scheme, which
Gell-Mann dubbed the “eightfold way” after a Buddhist doctrine (remember this was the
sixties), as the periodic table of particle physics.

Aside from the obvious question of why nature chose sl(3) for this duty, a natural
question to ask is why do we observe these particular representations and not some
completely different ones. Gell-Mann had an answer for that as well (also independently
proposed by Zweig at the same time). The proposed answer was that these fundamental
particles are not so fundamental after all, but are actually composites constructed out of
new (and unobserved) fundamental particles called quarks and antiquarks.

This proposal turned out to be mathematically very satisfying because the quarks were
assigned to the first fundamental sl(3)-module Lω1 , also known as the defining module,
whilst the antiquarks were assigned to its dual, the second fundamental sl(3)-module Lω2 .
Quarks and antiquarks thus come in three flavours, called up (u), down (d) and strange (s),
that are interchanged by the (approximate) sl(3) flavour symmetry. Their different masses
are (partly) responsible for the different masses observed for the particles.

ud

s

ūd̄

s̄

One may therefore form composite particles, like protons and neutrons, by combining
either a quark with an antiquark, by combining three quarks or by combining three
antiquarks. As quarks are fermions, the first combination gives bosons (these are called
mesons) whilst the second gives fermions (called baryons). These empirical rules led
to the postulate of colour symmetry wherein each quark/antiquark is also assigned a
“colour”/“anticolour” such that only colourless combinations may be combined. This is
the basis of quantum chromodynamics.

Finally, we come to the mathematics. The representation-theoretic interpretation of
“combining quarks and antiquarks” to get mesons is taking the tensor product of the
fundamental sl(3)-modules Lω1 and Lω2 . Since both have dimension 3, being the defining
module and its dual, respectively, this tensor product is 9-dimensional. ByWeyl’s theorem,
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it decomposes as a direct sum of irreducibles and, by Corollary 5.7, the highest weight of
every irreducible summand is dominant integral.

If you did Exercise 82, you would know that the weights of Lω1 ⊗ Lω2 are obtained by
adding a weight of Lω1 to a weight of Lω2 . The weights of Lω1 ⊗ Lω2 are thus as follows.

+ (0, 1) (1,−1) (−1, 0)
(1, 0) (1, 1) (2,−1) (0, 0)
(−1, 1) (−1, 2) (0, 0) (−2, 1)
(0,−1) (0, 0) (1,−2) (−1,−1)

Since the simple roots are α1 = (2,−1) and α2 = (−1, 2), we see that θ = (1, 1) is a highest
weight of Lω1 ⊗ Lω2 (because (1, 1) + (2,−1) = (3, 0) and (1, 1) + (−1, 2) = (0, 3) are not
weights). Therefore Lθ is a direct summand of Lω1 ⊗ Lω2 .

The only other dominant integral weight of Lω1 ⊗ Lω2 is 0, which appears with mul-
tiplicity 3. However, this does not mean that we have 3 copies of L0. Indeed, Lθ is the
adjoint module, hence dim(Lρ ⊕ 3L0) = 8+3×1 = 11 > dimLω1 ⊗Lω2 . This calculation
makes it clear that there is only room for one copy ofL0 and this is consistent with the fact
that Lρ already has 0 as a weight with multiplicity equal to rank sl(3) = 2. We therefore
conclude that

(5.80) Lω1 ⊗ Lω2 ' Lθ ⊕ L0.

You will have noticed that the two irreducibles on the right-hand side are precisely those
appearing in the two top-row particle diagrams above.

Exercise 116. Similarly decompose Lω1 ⊗ Lω1 into irreducibles by:

(a) Showing that 2ω1 is a highest weight of Lω1 ⊗ Lω1 .
(b) Using a Poincaré–Birkhoff–Witt basis argument to prove that the multiplicity of ω2

in the Verma module V2ω1 is 1.
(c) Explaining why the multiplicity of ω2 in L2ω1 is therefore also 1.
(d) Explaining why this implies that Lω1 ⊗ Lω1 ' L2ω1 ⊕ Lω2 .

Follow similar steps to show that Lω1 ⊗ L2ω1 ' L3ω1 ⊕ Lθ . H

To obtain the representation-theoretic content of the baryons, we therefore need to
decompose the triple tensor productLω1 ⊗Lω1 ⊗Lω1 . Given the results of Equation (5.80)
and Exercise 116, and recalling that tensor products distribute over direct sums, we get

(5.81) Lω1 ⊗ Lω1 ⊗ Lω1 ' Lω1 ⊗
(
L2ω1 ⊕ Lω2

)
' L3ω1 ⊕ 2Lθ ⊕ L0.

However, we only observe baryons in the 10-dimensional module L3ω1 and one of the
8-dimensional Lθ modules. The reason for this ultimately boils down to Pauli’s exclusion
principle: quarks are fermions so the wavefunction of the baryons should be fully anti-
symmetric under exchanging quarks. But this antisymmetry gets contributions from sl(3)



120 D RIDOUT

colour, sl(3) flavour and sl(2) spin factors, the final result being that the flavour L0 and
one of the Lθ modules fail the exclusion principle.

Of course, physicists have also discovered many more particles that do not fit into
this simple sl(3) picture. To accommodate these, we now believe that there are in fact
six quarks rather than three. The newbies c (charm), b (bottom) and t (top) have been
experimentally discovered. However, extending sl(3) to sl(6) (or something similar) to
accommodate them does not seem to be useful. Even the experimental data involving
only u, d, s and c, corresponding to a putative sl(4), suggests that this symmetry is badly
broken at accessible energy scales (if it even exists).

In a different direction, physicists have recently discovered exotic particles (or reso-
nances) described as tetraquarks, being composed of two quarks and two antiquarks, and
even pentaquarks, which are composed of four quarks and one antiquark. In all cases con-
firmed to date, one of the quarks has been a c or a b. Ignoring this, one could try to explore
the representation-theoretic context of such exotics by analysing the tensor products

(5.82) Lω1 ⊗ Lω2 ⊗ Lω1 ⊗ Lω2 and Lω1 ⊗ Lω1 ⊗ Lω1 ⊗ Lω1 ⊗ Lω2 .

However, without any experimental guidance, it isn’t clear what this would achieve...

Exercise 117. Decompose the tensor product of the sp(4)-module Lω1 with itself into
irreducibles, carefully explaining your reasoning at each step. H
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6. Afterword...

So there are many things that one would like to have time to include in this first
glimpse into the wonderful world of Lie algebras and their representations. The most
serious omission here is that while you know how to determine the weights of a finite-
dimensional module over a semisimple Lie algebra, in principle, we have not discussed
how to determine their multiplicities, ie. the dimensions of the weight spaces. Another
important discussion is the fact that complex Lie algebras are just the most accessible part
of the wonderful world of Lie theory and we shall take some time to describe some of the
generalisations and directions that mathematicians have followed, generally in pursuit of
physicists, in their quest to understand symmetry.

6.1. Multiplicities, characters and dimensions

Let us denote by multλ(µ) the multiplicity of the weight µ in the irreducible highest-
weight module Lλ. Then, multλ(λ) = 1 (Exercise 97) and these multiplicities may be
computed recursively using the following identity due to Freudenthal:

(6.1)
(
‖λ + ρ‖2 − ‖µ + ρ‖2

)
multλ(µ) = 2

∑
α∈∆+

∞∑
j=1
(µ + jα ,α)multλ(µ + jα).

Note that the sum over j on the right-hand side is effectively finite because µ+ jα cannot be
a weight of Lλ, ie. multµ+jα (λ) = 0, for all sufficiently large j. The norms on the left-hand
side and (especially) the shifts by ρ suggest that Freudenthal’s identity has something to
do with the quadratic Casimir Q . Indeed, it is proven by explicitly computing the trace of
Q on the weight space of Lλ of weight µ and noting that Q acts on this weight space as
multiplication by (λ, λ + 2ρ).

Freudenthal’s recursion relation is rather tedious to apply by hand, but is not too hard to
implement on a computer. In principle, one could use it to compute all the multiplicities
of a finite-dimensional irreducible module Lλ, ie. one with λ ∈ P>. Summing these
multiplicities would then give us the dimension of Lλ, a quantity that has been hitherto
out of reach. However, this is not particularly satisfying... wouldn’t it be nicer if there was
a closed-form expression for this dimension?

There is. But rather than just state it immediately, let’s use this as an opportunity to
introduce another way of encoding multiplicities which turns out to be theoretically (and
practically!) extremely important. This encoding is called the character of the module
and it applies to quite general weight modules (as long as the multiplicities are finite). It
is in fact nothing more than a generating function for the multiplicities, as we shall see.

Define formal exponentials eλ, for λ ∈ g∗0, so that the usual property eλeµ = eλ+µ is
satisfied. The formal exponential e0 is clearly the multiplicative unit of this abelian group,
itself isomorphic to g∗0, and we shall denote it by 1. The character of a weight module V
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is then the following generating function ch[V ] in the group algebra �g∗0:

(6.2) ch[V ] =
∑
µ∈g∗0

multV (µ) eµ .

Here, multV (µ) is the multiplicity of the weight µ in V . Note that even though the sum is
over a set g∗0 whose cardinality is uncountably infinite, the multiplicities are almost always
zero for the modules that we have been concerned with, so the sum is effectively finite or
countable.

It is common, especially in the physics literature, to write µ =
∑r

i=1 µiωi , with r = rank g,
so that we may express the character in the alternative form

(6.3) ch[V ] =
∑
λ∈g∗0

multV (µ) z
µ1
1 · · · z

µr
r , where zi = eωi ∈ g∗0.

One often writes the left-hand side as ch[V ](z) to emphasise this change of viewpoint.
It certainly makes the “generating function” nature of the character more manifest. Now
observe that µi is the eigenvalue of the simple coroot hαi on the weight space of V of
weight µ, whilst multV (µ) is its algebraic multiplicity (in the weight space of weight µ
anyway). We therefore have

(6.4) ch[V ](z) = trV zhα1
1 · · · z

hαr
r .

Physicists will recognise this form of the character as a mathematical abstraction of a
partition function (Z = tr e−βH so z ∼ e−β ) and thus realise why characters are so
important in quantum physics and statistical mechanics.

From the point of view of mathematics, characters not only encode the multiplicities of
a representation, they also do so in a way that behaves beautifully with respect to direct
sums, tensor products and duals. Indeed, the analysis of Exercise 29 may be slightly
generalised to show that

(6.5) ch[V ⊕W ] = ch[V ] + ch[W ] and ch[V ⊗W ] = ch[V ] ch[W ],

whilst the character ofV ∗ is obtained from that ofV by inverting all the formal exponentials
(eµ → e−µ). Equivalently, ch[V ∗] is ch[V ] with each zi replaced by z−1

i :

(6.6) ch[V ∗]z = ch[V ]z−1.

Recall that weights are linear functionals on the Cartan subalgebra. For our purposes,
it is important to realise that formal exponentials, and hence characters, may be regarded
as (non-linear) functionals on the Cartan subalgebra. Equivalently, we may view formal
exponentials and characters as functionals on the dual space, ie. acting on weights:

(6.7) eλ : µ 7→ e(λ,µ) ∈ �, for all µ ∈ g∗0.
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We call this action evaluation for hopefully obvious reasons. Note that evaluating the
character of a module at 0, ie. replacing each zi with 1, results in the dimension of the
module (assuming that this is finite):

(6.8) ch[V ]
��
0 = ch[V ](1) =

∑
λ∈g∗0

multV (µ) e(µ,0) =
∑
λ∈g∗0

multV (µ) = dimV .

One can check that the character of the irreducible sl(2)-module Lλ is given by

ch[Lλ] = eλω + e(λ−2)ω + · · · + e−(λ−2)ω + e−λω(6.9)

= zλ + zλ−2 + · · · + z−(λ−2) + z−λ =
zλ − z−λ−2

1 − z−2 =
zλ+1 − z−λ−1

z − z−1 .

Here, we have written the character as a Laurent polynomial in z = eω and then as a
rational function for brevity. Evaluating at 0, ie.setting z to 1, indeed gives the dimension
as λ + 1, either by summing λ + 1 copies of 1 or by applying l’Hôpital’s rule. One can
similarly determine the character of the Verma sl(2)-module Vλ:

(6.10) ch[Vλ] = zλ + zλ−2 + zλ−4 + · · · =
zλ

1 − z−2 =
zλ+1

z − z−1 .

This time, the character must be treated as a power series in z−2. Note that the limit as
z→ 1 diverges (even from below) in accord with the fact that dimVλ = ∞.

This Verma module computation generalises easily to general (semisimple) g with the
result being that

(6.11) ch[Vλ] =
eλ∏

α∈∆+(1 − e−α )
=

eλ+ρ∏
α∈∆+

(
eα/2 − e−α/2

) ,
where we have used (5.50). This must be expanded in negative powers of the formal
exponentials eα with α ∈ ∆+. The generalisation of the computation for irreducible
highest-weight modules is decidedly non-trivial in general. However, for λ ∈ P> (ie. the
case where dimLλ < ∞), Weyl proved the following beautiful character formula:

(6.12) ch[Lλ] =

∑
w∈W detw ew(λ+ρ)∏
α∈∆+

(
eα/2 − e−α/2

) .
Here, W is the Weyl group and detw ∈ {±1} is the determinant of w ∈ W as a linear
transformation on the real/rational inner product space R.

One could wax lyrical about Weyl’s character formula for a long long time. Here,
we only have time to ruminate on three of its immediate consequences. The first is the
specialisation corresponding to taking λ = 0. AsL0 is the one-dimensional trivial module,
its character is just e0 = 1. We therefore have Weyl’s denominator identity:

(6.13)
∏
α∈∆+

(
eα/2 − e−α/2

)
=

∑
w∈W

detw ew(ρ).
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Substituting back, we arrive at an alternative form for Weyl’s character formula:

(6.14) ch[Lλ] =

∑
w∈W detw ew(λ+ρ)∑
w∈W detw ew(ρ)

.

The second consequence is our desired dimension formula. However, its derivation is
not merely evaluating the character formula at 0. Weyl’s formula is indeterminate at 0 so
l’Hôpital’s rule is required. More precisely, one evaluates (6.12) at tρ and then takes the
limit as t → 0. The result is remarkably simple:

(6.15) dimLλ =
∏
α∈∆+

(λ + ρ,α)

(ρ,α)
.

With the Gram matrices of Section 5.6 or the positive roots as linear combinations of
simple roots, as in Section 4.7, it is now straightforward to compute the dimension of Lλ

in terms of the Dynkin labels λi , eg.

(6.16)
for sl(3) : dimLλ =

1
2 (λ1 + 1)(λ2 + 1)(λ1 + λ2 + 2)

and for sp(4) : dimLλ =
1
6 (λ1 + 1)(λ2 + 1)(λ1 + λ2 + 2)(λ1 + 2λ2 + 3).

Our third consequence is called (I kid you not) the strange formula of Freudenthal and
de Vries. It determines the norm of the Weyl vector as follows:

(6.17)
‖ρ‖2

2h∨
=

dim g
24
.

This might seem like a bit of a curiosity and in some ways it is. However, it turns out to be
crucial to an important link, predicted by physics, between Lie theory and number theory!

To be slightly more specific, conformal field theory requires that the characters of
appropriate representations of certain infinite-dimensional generalisations of semisimple
Lie algebras (called Kac–Moody algebras — see below) are vector-valued modular forms.
This means that these characters span a representation of the modular group SL(2;�)
and can be expressed in terms of functions that number theorists have been studying for
hundreds of years. This input from physics has, in so many ways, completely revitalised
this corner of number theory.

To see where the strange formula comes from, recall that the dimension formula (6.15)
may be derived by evaluating (carefully) the character formula at 0. This is equivalent to
taking a Taylor series about 0 and computing the constant term. If, however, one computes
the linear term, then (with a bit of hard work) one arrives at the strange formula. Note that
the norm in this formula is scaled so that ‖θ ‖2 = 2 as one might expect from the explicit
factor of 2h∨.

6.2. But wait! There’s more...

I’d like to close with the admonishment that we really haven’t begun to scratch the
surface of Lie theory. There are many many directions remaining to explore. First, of
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course, there is still a lot that we’ve omitted about the theory of complex semisimple Lie
algebras. Even granting this, one should ask what the classification in the complex setting
means for real semisimple Lie algebras (the answer lies in a generalisation of Exercise 24),
let alone what happens in other characteristics. And then there’s the corresponding Lie
groups which we only touched on briefly. With Lie groups, one adds geometry, topology
and analysis to the algebraic palette that we have studied here. You should not be surprised
to learn that the resulting picture is beautiful and important: for example, understanding
Lie groups has driven many advances in algebraic and differential geometry and topology.

In a somewhat different direction, the last thirty years or so have seenmany Lie-theoretic
advances at the behest of mathematical physicists. More than a few have even been re-
warded with Fields medals. One such advance is the mathematical characterisation of
the symmetries that physicists uncovered in certain “integrable” systems. This character-
isation was dubbed a quantum group by Drinfel’d (and was discovered independently by
Jimbo). An important class of quantum groups is obtained by “deforming” the universal
enveloping algebra of a complex semisimple Lie algebra. This involves introducing a (fre-
quently complex) parameter q into the defining relations (4.103) in a consistent fashion.
Interestingly, this doesn’t change the representation theory unless q happens to be a root
of unity, in which case things change a lot. More interestingly, physical applications of
quantum groups seem to require q to be a root of unity...

Another physical advance in Lie theory is the consideration of what are now called Lie
superalgebras. These are just like Lie algebras except that elements comewith a parity and
the defining relations involving two odd elements acquire an additional sign. In particular,
the Lie bracket of two odd elements is no longer modelled on the commutator, but rather
on the anticommutator

(6.18) {x ,y} = xy + yx .

The original interpretation in physics is that even elements correspond to bosonic degrees
of freedom, whilst odd elements are fermionic. A particular special case is supersymmetry
in which one has a special type of bijection between the even and odd elements. For a
long time, physicists were convinced that nature was secretly supersymmetric. However,
nature keeps her secrets well and supersymmetry isn’t looking all that great for physicists.

On the other hand, supersymmetry has been awesome for mathematicians. The math-
ematical theory of simple Lie superalgebras is now fairly well-developed, eg. there is a
classification due to Kac that is analogous to that of Section 4.8. However, the theory has
some nasty surprises. For example, simple Lie superalgebras have root systems, but the
roots can have zero (or even negative) norm and they can even occur with multiplicity
2. On the other hand, the representation theory is much harder because Weyl’s theorem
fails for almost all simple Lie superalgebras: finite-dimensional modules need not be
completely reducible.
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Yet another physical advance relates to quantum field theory and, more specifically,
string theories in which space(time) is a (suitable, eg. reductive) Lie group. Strings, being
essentially circles, have an infinite number of vibrational modes (cf. Fourier series), each
of which corresponds to a creation or annihilation operator in an infinite-dimensional
Lie algebra. Completing this with zero-modes results in a so-called loop algebra. By
a quirk of quantum mechanics (that’s mathematically explained in terms of Lie algebra
cohomology), quantised strings add a “central extension” to the loop algebra and one
arrives at what mathematicians now call an untwisted affine Kac–Moody algebra.

These are infinite-dimensional Lie algebras with roots and coroots, Cartan matrices
and Dynkin diagrams. They have been classified and behave fairly well — no roots
have negative norm, though a few have zero norm and the Cartan matrices always have
zero determinant. Their (non-trivial) irreducible highest-weight modules are all infinite-
dimensional, but there are some which behave rather like the finite-dimensional modules
of a semisimple Lie algebra. Luckily, these modules are precisely the ones that arise in
the string theory’s quantum state space (at least when the semisimple part of the Lie group
is compact). It’s probably fair to say that affine Kac–Moody algebras are one of the most
important advances in modern Lie theory for both physicists and mathematicians.

And then there are affine Kac–Moody superalgebras, affine Kac–Moody (super)groups
and the quantum (super)groups obtained by deforming their universal enveloping (su-
per)algebras. Even more generally, much of the beauty of string theories can be attributed
to what physicists call conformal field theory in which the Lorentz/Poincaré symmetries of
special relativity are extended to conformal symmetries on, eg. two-dimensional Riemann
surfaces. The symmetries underlying conformal field theories have been axiomatised in
several ways, one of which is called a vertex operator (super)algebra.

Along with the mathematical gadgets mentioned above, vertex operator (super)algebras
not only play a central role in modern mathematical physics, they also regularly astonish
mathematicians from all areas (from algebraic geometers to number theorists to category
theorists) with their amazing properties. I believe it’s fair to say that this explosion of Lie
theory is 21st century mathematics that is still being uncovered. There are surely many
more beautiful seams to mine here and further connections to “classical” mathematics to
understand. Hopefully, you’ll get a chance to try your hand at this yourself one day.

— fin—
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