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Cell Learning Theory I
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Notes on joint work with Michael Chappuis .

To setup the problem we follow

the "connectivity map
"

paper (
L] and consider centimes , perturbgene and

genee-xpression.AE/ine is a culture of animal cells that can be propagated
repeatedly (perhaps indefinitely ) and are thus convenient for in vitro studies .

Example : the immortalised mouse Sertoli cell line MSC - I .

Cell lines are

often used in place of primary cells to study biologicalprocesses , butsome

care is requiredwhen generalising toprimary cells .

The central dogma ofmolecular biology (due to Crick ) states that DNAtRNA

are toproteins what syntax is to (operational ) semantics .
More concretely ,

generally speaking there are three classes of information carrying biopolymers
in living organisms : DNA

,
RNA andproteins . The transfers of information

thatare known to occur :

G DNA • DNA→ DNA ( DNA replication )

IT . DNA → mRNA ( transcription)

↳ RNA • mRNA → protein ( translation ) ) general transfers
t
.

Protein . RNA→ RNA (RNA replication )
• RNA → DNA ( reverse transcription ) ) special transfers .

• DNA→ Protein

It may be argued that computation is the most fundamental aspect of life [A] .

Regarding the subset of computations taking place within cells, the physical
mechanisms which support computation include geneeegutatovynetworks .

Such a network is a collection of regulators that govern the gene expression
level of mRNA and proteins .

These regulators can be DNA , RNA, protein
and "

complexes
" of these .



②

For example some proteins serve to activate othergenes, and these transcription

factors (Tfs) are the main players in regulatory networks . By binding to the promoter

region at the start ofothergenes they turn them
"
on
"
.

More precisely , for

transcription to take place the enzyme that synthesiser RNA, RNIpolymerase
mustattach to the DNA near a gene and it is the transcription factors which
recruit RNA polymerase .

A gene may be require multiple transcription factors .

The same response element sequence may be located in the control regions

of different genes , so that these genes may be stimulated simultaneously by

a single transcription factor.

A transcription program is a setof functionally related and co -regulatedgenes (PM ] .

Such programs can be independently regulated using combinations of Tfs .

We can

roughly consider four classes of Tfs

• Classify :

"

housekeeping
"

expressed in most or all cell types .

• class B :
" signal dependent

"

present in latentform in un -stimulated cells .

Upon activation these TF quickly activate or repress their targetgenes .

These TFS are pre
-made ( P Ras )

- class C expression induced by class B TFs, notpre -made (skas )

• Class D lineage -specific, express cell -type - specific genes .

Primary Response Genes ( PRas) can be induced rapidly and do not require de novo translation

for their induction, whereas slow Response Genes (SRas) are induced slowly, require de novo

translation for their induction and are regulated by PRA proteinproducts (FSRT .

Note To give an idea, in [MARS, p -
8 ] there are ~20,000 genes and

- 100,000 cells
,

and (NJ estimates - 1600 Tfs in the human genome .



Simplegicmodel Suppose G is a set of genes , and for each gene g let

active ( g ) = gene g is active

Assume for each g EG we have an encoding q (g ) (say an integer ) of the

response element for g (assume
there is only one per gene) and an encoding

k (g) of the transcription factor - Then the previous paragraph may be

encoded by the axiom

F g
'
Ea ( active ( g ' ) x Hg ' ) = qlg ) ) ⇒ active ( g )

. (* I

suppose given some initial facts to = { active G) Yes for S E G .
which

propositions active (g) are logical consequences of these initial facts ? IfG

is finite then the following iterative procedure (forward chaining CRN , 59.37 )
reaches a fixed point : set Fn = all statements deducible from Fn - I

and the axiom schema (* ) in one step .
T

T

active Cgi) = Fake
iterative procedure active ( s, ) = True

. my ,

'

y
'

,

i

active (g n) = The active ( int -- Ture

w
w

Inference pwbtem Suppose examples of the following form are given
(go , Q) where go C- G and Q E G is finite

,

to be read as
"

go
is initially active and at time the set Q (and possibly othergenes ) are active

"

.

In principle we can run fixed point iteration starting with {903 and see
if Q becomes active to derive a distribution over axioms (*) .

Assuming G is large this is impossible as the setof axioms is large .

So instead we could formulate arrested inference problem : first given Q

predict P E G finite and run the fixed point iteration just for
those axioms involving { 90,7 u P Z Q .



④
③

Simplevectormodel Suppose G is a set of genes and for each gea
we have an encoding or representation of the proposition active ( g)

of the following form : a fixed unit vector TEH and a vector v (9) EH
^

such that our belief in active (g ) is / Lucas) , T > / E lo , D where vis) = " "Ynys , 11 .
Here H is some Hilbert space .

Suppose also we have encodings klg ) , 919) EH so that Hg ) = q ( g)
" "

is replaced by klg) x q ( 9) . Then a
"soft

"

encoding of CH is

a a a a

Fg
' EG ( x (g ' ) x T x k (g ' ) x q ( g) ) ⇒ v (g) = T 13.1 )

A simple analog of the fixed point iteration in the logic setting is the rule

which starts off with a set SEA of active genes, sets v (s)
- T for

SES and v ( g ) =L for g IES ( here T is " true
"
andL is

" false " and

we assume Lt
,
T> = O )

.

In the iterative step we look at each g ,
x x x

and if any g
'
with L 919 )

,
Kl 9 ' )> large has 419

'

) x T we should

move g closer to
T

.

One rule achieving this is

es 919), Hg
' )>

v ( g)← x (g) t I- v(9
' ) (3. z)

g
' C-a § 69191,1445

That is
,

x x

Dv (g) = I 8 ( 919 ) = Hoi ) ) - T ( 3.3)

x
X

+ I[ f ( Elg) = Hail ) t
v ( g') =L

Assuming some kind of normalisation, this has the same fixed point .



④

With some added complexity this "simple vectormodel
"

is a Transformer,

with each iteration of the Transformer block representing one iteration .

The genes or
"entities " play the role of words in language modelling and

we have the following dictionary

Transformer Gene regulation
-

entity gene

query encoded response element

key encoded transcription factor

value encoded activation

Somethueghts

• The " switch T to t via iteration to a fixed point
"

makes each

entity behave like a variable with "name
"

given by the query
and content by the value vector , anditerationsimulalessubstitutionfsubstitution of a complex term might be simulated using
multiple heads )

I
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ke¥rlearningmodel (v1)

the taskof the model is to learn the algorithm underlying the changes in mRNA

and protein concentrations .

We assume a correspondence between depth and

wall time in the cell evolution, and suppose that each experiment involves

acedline.aperturbagenatsomewncentration.am measurements of

mRNA populations atsome collection of times tic - - - Ctn
.

State Theresa sequence of entities , divided into three groups

• . - - - • • - - - - • • - -
- -

- B • - - -
- -

- - - •

---

cell line perturbagen auxiliary gene primary gene encodings
encoding encoding encodings

(e.g - Pon
(one per entity )

p . )

Note that the perturbagen entities have a learned encoding of

(perturbagen, concentration ) pairs .

Lose Assume some mapping Ffomtimesto depths Fct . ) c- -
- CHEA )

t.info - -
- • • - - - -

• . . . - • •.•TPaIidE¥ons
:

i
# predict

activations

t=t , Tq - -
- ooo ooo - - - -

• • - - - • •-•]

1=0 [• -
- -

- O • - -
- - O o - -

- o • - - - - - - - • ]
-

-
-
-

cell- line

( perturbagen aggies genes

DD
ID conc .
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The auxiliary genes are meant to be
"

prepared
"

by the context of cell - line

and perturbagen to include whichevergenes are computationally relevant .

Remarks (i ) Webin the concentration levels and represent them by some

numberof tokens a, . . ., Cn .
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Sketch ofacellular learning model H2)

The key difference between modelling gene regulation programs and natural language
is that the probability distribution over possible nextwords in a sentence (activation of

a gene ) depends on the other words in the context (activegenes) but not on otherwords

( inactive genes ) . However given some initial set G. of active genes, the probability
that agivengenegwillbeactineattimet depends indirectly on Govia genes h # Go
which are induced bythegenesin Go

.

Ifwe accept the basic model outlined above, this means the
"
new problem

"

beyond

language modelling to be solved is to predict the
"

auxiliary genes
" P determined by Go

(that is
,
so that message -passing laltentionon PUG . predicts well the activation

level of any g ) . To this end we divide into two networks (partly inspired by the original

AlphaGo architecture and its bootstrap value function).

Static network (fo )

Given a cell- line c
, aperturbagenu , a concentration x. a listof active genes Go ,

and ageneg , predicts the probability that when the given perturbagents introduced
to the given cell- lineal

- thegiven concentration inastakwherethegenesinao are active,
al-sometime between this moment and the end of measurements g will be active .

⑨→ prediction

iterated Transformer block fo G. i )

• . - - - • • - - - - • • - - -
- -

- - - • •

- --

cell line perturbagen primary gene encodings query gene
encoding encoding (one per entity ) ( g)
(c) (uandv ) ( Ceo )
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We
"

prelrain
" this static network on our dataset, in theprocess generating embeddings

forcell lines
, perturbagens, concentrations and genes .

We call these the static network

embeddings -
The network fo learns which genes are relevant to the dynamics, but

not the dynamics itself .

Note -

- probably wewantfotobeageneratiremodelnota classifier, sausage below .

Inthiscasewewouldusethe Transformer in its standard encoder- decoder form and predict

a set- of activated genes .

Dynamic network (gy)

Givenacetltinec
, pertuvbagenuand concentration v, a list ofactive genes Go and

a
"

query
"

geneg , predict the activation level ofg at some particular time .

The embeddings are initialisedtothestatic embeddings, butane allowed to vary
with training of 4.

⑨→ prediction

iterated Transformer block gy
(7-2)

• . - - - • • - - - - 00 ⑨ - - - - • @ -
- - - - @ •

- -- -

cell line perturbagen auxiliary gene encoding query gene
encoding encoding gene encoding ( ao )

( P) ( g)
(c) (uandv )

Hereweusethenetwovkfotosampleasetpof auxiliary Irrelevantgenes .

To predict activationof gal- time NT we use N iterationsofgx - The idea

is that the Q, kill matrices associated to each gene area
"

microscopic program
"

and these microcode are made to interact- via self-attention ingx. To some

extent- this interaction must- model the actual gene expression program if 94

can predictthe activation levels of arbitrary genes .
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Tomakefulluseof the training data, andtorealisetheideathat the attention microcode

should model the underlying gene expression program, we
ask the network to predict

notjmtthefinalactirationofthequerygenebut final and intermediate activations of
all genes in PuGo0{ 93 at some standard time points corresponding to measurements .

•

•

•

-→ predict activations
•_••0 attimezt

iterated Transformer block gy

9 T

T T T predict activations
•-•@ attimet

iterated Transformer block gy ) models onetime interval

• . - - - • • - - - - 00 @ - - - - • @ -
- - - - @ •

- -- -

cell line perturbagen auxiliary gene encoding query gene
encoding encoding gene encoding ( ao )

(c) (uandv ) ( P) (9)

Contrast to the literature

we take a "program synthesis
"

point-of-view, which seeks to model gene activations

overtime as measurements of an ongoing computationalprocess . The model is the

time - evolving representations in a Transformernetwork , thought of as " registers
"

( genes, entities) interacting via attention (messagepassing) . This is in contrast to

papers
like ARS] which are focused on classification on the basis of learned

representations of individual gene - cell activation matrices .



https://huggingface.co/transformers/tokenizer_summary.html

④

Token isation

This model faces a similar problem to Transformers in NLP, namely there are too many

genes (
words)

.

If the numberof genes is on the order of 50,000 then this is

compatible with standard Transformers on modern hardware (aPT has ~ 40,000 tokens )

but if it is larger then strategies like BPE may be used ( )
.

Transformers do classification

To predict the activation level of a gene we use the final hidden state of the rightmost
"

query
"

entity , which is fed to a classification layer . This follows standard practice [BERT]
-

-

Position encoding

Transformers only
"
see

" the orderof their inputs via position encoding , andwechoose

these so that the network is invariantto permutations within thegroups of input entities

in 17.11
,
18.1 ) but so thatthe groups appear in the specified order.
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Higher-order interactions

The analogies between the attention mechanism and
"

logic" models at the beginning

of this note
,
and elaborated further below

, suggest that the architecture is a good

fitfor genes requiring a single TF to be induced. Forgenes requiring multiple Tfs

we are in the situation of Gs] where there is preliminary evidence that higher - order

attention can help Transformers model higher - order interactions .

Reasoning with Transformers

In
many ways the quest to realise reasoning within artificial neural networks parallels

Boole 's attempt to model human reasoning by algebra, which was the beginning of

modern logic [Boole] . This influence is strong (and perhaps unconscious ) in e - g .

(HT
.

( Boole]

Le Cun
, Beng io, Hinton [LB H] .
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There is a way of thinking about attention and Transformers which draws out the

continuities with Boole 's work , emphasising the central role of algebra in spaces

of representations . In Boole 's work a proposition p about the world is an element

of an algebra ( thought of as an operator on some hypothetical state which projects onto

configurations satisfying p) and conjunction is multiplication .

In Transformers

a relationship between entities is represented by a
"head

" [25
, Remark 2 - D

which is a transformation of entities to vectors in an inner product space H .

The Clifford algebra UCH ) is an associative unital IR -algebra generated by H

subjectto the relations xytyx = 26, y) - 1 where L , > is the pairing
( e.g .

dot product on H = Rd) . The underlying vectorspace of Cl CH ) has a

Z-grading in the sense that

Cl ( H ) = Cl (H )o A Cl (H ) e A - - -

U I C- Cl (H) o

A = [A)
o
t [A) e t -

- - [A) i C- Cl LH ) c-

Example H = R2
,
47 is the dot product then for x - Xie , txzez

, y = y , e , tyzez

in H
,
with ai

, yi ER for IE is 2, in Cl CH )

xy
= ( x ,

e , txzea ) ( y , e , tyzez)
= x , y ,

et t x , y z e , ez taay , ez e , txzyzez

But zef = Kei , e ie - I = 2 - I so e f = ef =L
,
and

e , ez teze ,
= 2Le. , ez> . 1=0 so

ay
= (x , y ,

t xzya) . I t ( x , ya - xzy , ) e , ez
-

(ay ]o is the dot product
of x , y in CK tho EIR .
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Let x , y be learned representations of entities in H .
The Transformer represents the

inductive bias that a relationship between these entities exists to the extent that

the dot product Loc, y) is large and positive .

We may thinkof this as a property
of theproduct ay in Cl (H ) , so that measuring the degree of relation between
the entities is factored into several steps

product Elo
H ④ H→ CKHIOCKH)- Cl ( H )- Cl ( H)ER

( 13 . D

xay xay ay Locy)o = Logy> . I

---

embed into an algebra multiply in that extract measure of

algebra relationship

Ofcourse this is unnecessarily complex in the case of binary relations, butjust as in Boole 's

work the virtue of an algebraic perspective on reasoning becomes more apparent
when more entities are involved .

In GSI it is explained how to use the same idea

to model three -way (and higher - order) interactions in the setting of Transformers .

Transformers learn to route and transform information using the geometric algebra
of dot products, and the success of these models across many difficult tasks ( including
reaction to units in AlphaStar and protein folding in Alpha Fold ) makes it clear

that this algebra ofattention supports some form of reasoning with representations

( onedefinition of reasoning is deductionsmade on the basis of algebraic operations
on a representation of existing knowledge (Bo] .

Indeed that is precisely Boole 's idea ! ) .

This arguably goes towards realising the replacementof
"rule - based symbolic expressions

by operationson large vectors
"
as in l l-BHI

.

More complex algebras may support
more complex reasoning .

This concludes the sketch on our approach to unifying logic with deep learning via

algebra .

Under the Cuny-Howard correspondence this also relates to Transformers modelling code

( be it computer code or gene regulation programs ) .
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OY - Time points ? Adaptive computation time

j . • i

qi , K'i ,k?

•
l

C-
CICH )

qikjke - multiplication in CICH )

# scalar
2 : CIIH ) → IR

Z ( qikljke ) is the analogue of Lali , Kj>

in standard attention


