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"
Butas artificers do not work withperfect accuracy ,
it comes to pass that mechanics is so distinguished
from geometry thatwhat isperfectly accurate is called

geometrical; what is less so, is calledmechanical .
However the errors are not in the art butthe artificers?

- Newton
, Principia .

If we are interested in the fundamental nature of computation, we must reckon with

the fact that Nature was computing for a billion years before church, Godel and Turing .

But what kind of computation is this, and does understanding this
"natural computation

"

lead us any deeper into the theory of computation ?

In this seminar we explore some of the features that distinguish natural computation

from other models of computation thatare more familiar in computer science, e.g . Turing Machines .
This is a very broad topic, so in order to avoid emptygeneralities we focus on Gene Regulatory
Networks (GRNs) as our main example, but this by no means the only example ofcomputation
in living systems (the example of neurons performing computations as a collective in the
brain is of course familiar, ifyou're able to read this) .

The central mathematical object in theoretical computer science is the program .

One way of

distinguishing natural computation is to discuss how
" natural programs

"

,
e-g. the

algorithms embodied by GRNS, differ from
"
normal

"

programs. We focus on three differences :

1. Natural programs form a space Natural programs

2. Natural programs are learned, notconstructed . } #

Turing Machines
3. Natural

programs are singular
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BACKGROUND ON ARNS

We assume familiarity with the terms DNA, mRNA, RNA, protein, transcription (of DNA
into mRNA by RNA polymerase) , translation ( ofmRNA into protein by Ribosomes) and

Transcription Factors (TFS) (proteins, themselves typicallygeneproducts, which regulate genes by

promoting or suppressing their transcription into mRNA) .

Def
"

A Gene Regulatory Network is a collection of genes that interactwith each other

to control cell function
, including development, differentiation and responding

to environmental cues [N]
. They

• regulate thousands of genes to be expressed in specific spatial and temporal patterns [DL] .

• regulatory modules contained in thegenome receive multiple inputs and
"

process them in ways thatcan bemathematically represented as combinations

of logic functions (e.g.
"and

"

functions
,

"switch
" functions

,

"
or

" functions) .

At the system level, a gene regulatory network consists of assemblages of these

information -processing units; thus it is essentially a network of analogue

computational devices
" [DL]

.

Example 1
"
if lactose then enzyme

"

the bacterium E. Coli has three genes that code for

enzymes
that enable itto split and metabolic lactose .

Under normal conditions a.e. lactose

is notpresent ) transcription ofthesegenes is repressed by a repressorprotein (itself a gene

product) which binds to a region of DNA near the three genes .

Lactose can bind to this

repressor and remove it, allowing transcription to proceed :

lactose
a

repressor →y
Promoter / Operator / Gene 1 / Gene 2 / Gene 3
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1. NATURAL PROGRAMS FORM A SPACE

The interiorofa cell is
,
in part, a statistical mechanicalsystem in which large numbers

of interacting molecules more thermally and interactions are governed by probabilities
and concentrations as in chemistry .

In particulargene transcription is stochastic

(butas RNA andproteins can be actively affecting biological function at levels as low

as a few copiespercell, one should use this framing carefully, [Ka] ) although probabilities

approach 0 or 1 at low or high concentrations of regulating molecules .

•

"

stochastic gene expression is thoughtto be the consequence of the random
activation and inactivation of transcription dueto successive cycles of

binding and release of transcription factors
"

[Ni, K] .

From [BULB]
,
some early ideas on

"

programs in cells
"
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It is reasonableto think of the GRN asjustsuch a
"stochastic molecularmachine

"

.

One

possible abstraction is to think of a GRN as a graphical network where the nodes are

genes and an edge g ,
→ gz represents the regulation ofgz by the product ofg,

(e.g. a TF) .

Since many genes are regulated bymultiple upstream TFS, the logical structure

of this network may be complex, and we can view concentrationsofgene products as

a function assigning to each gene a real number.

alt)
9
a

a- It) = µ It) "state
"

a
"

gie 9
"

a
' a

"

the time evolution of these gene expression vectors is sometimes described in Bayesian
terms
,
and sometimes by differential equations, but thepoint relevant here is that the

map from genotype tophenotype goes via a continuously parametriced setof

possible ARNS .
One way to think of the expression vector a- It) is as the tape of a

(naive probabilistic) Universal Turing Machine, some part of which is the
"

working tape
"

specifying working memory for theprogram, and some ofwhich is the
"
code tape

"

which determines the program being run .

Note Every cellin the human body has the same genome, so cell - types are distinguished
(during development) by the level of expression ofgenes : different cell- types run

different sets of "programs
"
.

But there is continuous variation evenwithin

cell - types [Ad] .

genotype > phenotype
discrete ^ continuous

+

ARNS

continuous
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We define natural programs to be Liberman 's stochasticmolecularmachines, e. g. ARNS,

which are continuously parametised and thus form spaces (ofsome kind ) .

This however raises a natural question : how can DNA, which in an individual cell

is discrete (atthe population level there is a distribution but that is not thepoint here )
code for a natural program which is continuous

? Ask a biologist for the correct answer,
but here's a guess

:
one can view the genome as encoding a discrete set of points

in the spaceN of natural programs (see [Ad] , which seems consistentwiththis idea)

genomes
natural programs
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Remark Natural programs exist in many forms
besides GRNS

, we use this as

an illustrative example of significance in biology .
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2. NATURAL PROGRAMS ARE LEARNED NOT CONSTRUCTED

In Nature computation and learning are both ubiquitous andclosely related : learning
(say to respond to a stimulus) tends to presume some form ofcomputation, andwhether by

evolution or aprocesswithin a single organism 's lifespan, the
"

programs
"
executed by

cells for larger systems) are theproduct ofgradual variation and optimisation, notreason

It is worth distinguishing several different forms of learning in biology :

• Evolution (i. e. learning at the level of distributions overgenomes)
• Brains /nervous systems (e.g. "standard

"

learning by synaptic plasticity)
• other tissues/organs (e.g. the immune system)
• Cells (somewhat controversial )
• ?

We have clarified in the previoussection whatwe mean by one example of
"naturalprograms

"

,

namely ARNS , and this leads us now to examine the role of learning in this context. Clearly
evolution has shaped URNS, but by acting on the genomes 9 rather than directly onN.

Does learning happen within cells, within their lifetime ? This is more less controversial

depending on how one precisely defines learning .

In one standarddefinition

Def
" 1 [Ba] Learning is structured updating of system properties based on processing

of new information .

By this definition E. Coli responding to thepresence of lactose (new information) by

promoting the transcription of a setof enzymes via removing a repressor ( structured

updating ) is unambiguously a form of learning .

Butthis is more like "response
"

and perhaps not whatwe mean by learning.
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Def 2 [a] Learning refers to any persistent and adaptive modification of an organism 's

behaviour as a function of its experience .

This is better and excludes the lactose example because the change in E. Coli 's state

is not permanent. We refer the leader to SLT seminar 1 for our own definition. For the

moment we will simply grant that learning in the sense of K] takesplace in single cells

and direct the reader to toc. c it
.
for a full discussion and examples .

From a mathematicalpoint of view the form of learning in cells isprobably more similar to

Reinforcement Learning (RL) than regression, and this is one reason to view statistical

learning theory with a changing true distribution as important . Ignoring the details

for now, let us suppose that WEN determines the phenotype , and that

given some experience 1 measurements/samples Dn from the environment

(e.g. pain (x, b) consisting ofphysical locations and bacteria concentrations
in Gelber 's experiment with Paramecia [a] ) of size n, it makes sense
to consider the Bayesian posterior

plw I Dn ) = P (Dnlw ) Y(w)

pl Dn )

Then we expect the natural programs executed in cells to be affected by two forms of learning
(at least ) namely evolution and

" live " learning, and for this influence to be mediated
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in both cases by something like the Bayesian posterior onN (with evolution acting on the

priorYand model class and experience acting via Dm) .
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natural programs
nes

@
8

@

•

1.
•

T
: • :

"
"

•

-
•

. •h÷
computationsearch

⑥
-

'

'

•

°

•

regions of posterior
concentration/☒

phenotype

Here is the point : taking experience (Dn ) and updating/modifying systemproperties /behaviour

(weN) requirescomputation , which can be realised for example as the cost of accurately
sampling the Bayesian posterior. In this situation learning is the process of

"burning in
"

and then sampling from some such sampling method. These are terms thatwe use to describe

optimisation or sampling in computers, but itseems reasonable to conjecture thatsimilar

processes have evolved naturally .

This leads us to a fundamental point : since N is a continuous space and the map ☒

fromN to the phenotype is many-to -one (see the next section ) , the Bayesian

posterior onW is singular ( in the sense that the Fisher information metric is

degenerate ) and thismeans that the learning process in cells (if it exists, and consists of

learning in continuously parametired systems like aRNS) is strongly affected by
these singularities (as we know from Singular Learning Theory ) .
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3. NATURAL PROGRAMS ARE SINGULAR

There are a "surprising
"

numberof degeneracies in the maps from genome to GRN and

from GRN to phenotype . To name just two

• Codon degeneracy :multiple three base -pair codons specify the same amino acid

leg. AAA , GAG code forglutamic acid) and often "nearby
" codonshave

similarfunction (e.g. NUN tends to code for hydrophobic amino acids, where

N = * = any nucleotide ) as a kind of "fault -tolerance ". This is a discrete

degeneracy in the map 3→Nfromgenome to ARNS .

• Multiplicative interactions many genes are regulated by multiple transcription factors,

so that it ispossible for the same level ofgene expression to be maintained while

decreasing the concentration of one TF and increasing (in some proportion) the

concentration of the other
.

In the algebraic expression for the expression this

appears as a multiplicative interaction xy . Complex networks of regulation will

display many such degeneracies, for reasons well-understood in [Wa, W] .

Since natural programs are learned, not constructed, and the learning process cannot distinguish
points w, w

'

c-N thatdetermine the same behaviour
,
natural programs should not properly

be understood as points weN but rather regions or phases WEN of the Bayesian

posteriorgoverning the learning problem .

It's tempting to speculate on a relation between such

phases and
"specialisations

"
in cell types [Ad] .

genomes
natural programs
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https://www.nature.com/subjects/gene-regulatory-networks
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