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In the fiat lecture if was arqued that deep leaming is an emeging general puvpose
fechnology , and that theow has an important role fo play  An cnalogy war made o

the vole of thevmodynamic theowy (ov move precisely ifs precaursors) in enabling the
clevaIO/amewf oA steam power i the fint indusiial revolution. This analogy was

not (‘c/fg chorsen - ﬂ)ermodynam/w and statistical mechanics also provide a useful

framework for undewtanding Watanabe's singular learning Theony i 34/4@%;/ ancl
deep learming theous in /m/ﬁcu/ar.

We will asrume ﬁmi/z‘an’ﬁ/ with thermodynamics atthe level of [ Callen’] and
e bcw/‘cm}p 5/’m3a/ar/eam/nj 7%‘30"7 [W]J and ure the /anyuage oﬂ the former
fo qive an acce/m/'é/e/pr@ewﬁﬁon oF the lalter

It may seem shrunge o use thevmodynamics (which s expresed in fhe language of
physical systems and concepls like energy, entopy volume, presiure, efc. ) 4 Pmemf
afopic in stafistics. Suvely theve isn'F conything avxalu7m,wﬁa/3m in deep
learning theow | However it han long heen undestood that the fundament
Pviwmp/@ of ﬁ/)ermdjnamics exlend far loeyonc/ gases in bolfles andl fevromagnetr.
The jw)ﬁ%‘ca%n for this lies outside the scope of 1his leckuve, buf You can
consider fhe information—theorehc interprefation of entropy [ Callen, 517.17]

and the orgin V4 macrwscoplc /%emooc/yn amj< coovdinates in Jyrmm e@/bnoa/emﬂ
exp)a/ned n [(q//em/ 52/]

Thisleads foa /)rEC/‘fe M)ermvdynamfc c//‘cﬁonavy for J/"ngu/ar /eamm? theowy,

6x]n/b;’)7hﬂ which is the purpose of this lecture .



1. The objeds o singular leayning theoy

for concreteness we consicler a Friple (P(H/I,W), ‘](tﬂ/"), 30(‘“)) associated o a clasy
07€ %ncﬁbﬂs j[[x) W) aj /n [MDL&l) §3) APper)o/ix A]J fo 7[‘ /RLXW'ﬁ /RM and.

| 2
F(V/I/W):(ml exP('é//y_—]C(z’w)// ) (2.1)

Here 5](3/?0 =p(v] we) Hor some wo€ W (1o we assume the pue dishi bution
isrealisable) and P(w) is a prior dishibution on a compact spae W < /Rclof weighs.

The cape where F,w) is o newral nedwork. is of infevert for deep leavning theory,

buf nothing ure a//'//Jay is fpff/%‘( fo this cave, and the dichonaw we develop holds

Hor 2 general claw of models, vot just hore of exponential form (2-1).

The cem’“m/ 744”6790/1 n «Smﬁma" Leammg 77)20{7 {JLT) s the Kullback — Leibler ((<1—>
divergence (“c(isfmme") befween the e dishibution and the odel

(v]=)
Klw) = f f 7(31=) log Fi—w) dxely (2-2)

(7}1/(“)

Ir\ﬂ’],@];'/ua#mo"g (2-1) oo CDMPM{‘Q (M P5>

Klw) = éf | fow) — Flawe) g (x) dx (2 2)

which /s c/ea//ﬂ a meonure of the ewor associaled fo weW. In./;mcﬁce we
can Oﬂlj inferact with he hte clispibution by dmuﬂ'ng samples D.=1(~, yr)},l,
and the empincal KL divegence associatec fo such a sample is [w, P 5]

Knlw) = WIZ:J |09 ZCHES) (2.4)



where S =7 e, g g lyclee) s fhe empiical entopy and.

Lo (w) = = > logplyslac,w) (3.1)
=
is the “log loss" or neqative lvg kel hood (we follow the nolation of [wAIC] here an [W]
wes Lo (w) P denote the liRelihood . Nofe thal Q-WL“(W) = ‘H’,;\, F(&IE [xc,w) is the
likelihood, moclulo fuctor 0927(%’)) . In Pmch’a wre clo not howne accenss o g and we
may not be able #o calculate Knor Sa, but we can oDWl,D'/l}e Ln(W) which is maximised

(W) s minimised (e g is fixed ) . Tn the situaton & (2-1)

Lnlw) = i oa[(ﬂ) exp(~L g~ Fee 1) |
- Z[~%(09(M)~i”ﬁ—f(’%tﬁ’) “2] (3.2)

= |

= % 03 27(\+J‘ZL

when K

?

—f(x, W)

s upfoa constant #hat-dependponly on M, and fhe fackor I=, the mean-squared enor.
Tf IE[ K(w) ] <00 then we have tonvevgence in /ovoloalw’//'/y Ka(w) — K(w) for all well,
ancl if /E[ K("")L] <O Yon LV\(W)—% K(w) =S in /meab///%f wheve S is the CMfVD/Dy

of the e distibution [W, p-6] So heunstically

K. = st + 1 MSE — S, (3.2)

The vexf /'mpo»/fumf O@ecf is fhe Posfew‘or} winch uing Bayw wile Is

P(wan)= P(Dafw) p(w) (2.4)
p(Dh)

We have decided fo worife F(w) for P(W) ,



Heme

n

|
P(WIDV]): m)"(w) _u plxe,gc(w)

= P(Dn) T(W)UF(W'I:/UJ)‘L(J(;)

Nohie that we model onl_kf the wndifional clishbution Ply1x,w), w0 we assume ()
17 given and set F(J{,Ww) = plylx) 9(<) we nole that he fackor TI,Z, 9(xc) does

nofcfepema‘ on w, S0

T, 96:) L (w)
p(w/Dn) = /_«P(D) Flw)e "
(4.2
— Yy g ) |
wheve wsing that p(W/Dn) is ajolxoloab//@ dishibution
—nln(w
Za = fdw Ylw) e ( )\ (4.3)

This cll/\ayﬂﬁj (s cq//ed he e\/INC{BV'wa Usmg (Z-Ll) we (an amve af an

6[((/1/'mfei’hL formulation of The pasfenor which is closer fo Mevmodywamfcv, Ry (4.2),

( —VLKV\('W) -—V\SyL

P(WIDH)= Z. Jlwe e
oy (4-4)
_ Z\WD Flu) e < (w)
o \/]Sn_ 'VlK"\(U")
whee 2, = € ZVL = fc{W flw)e is cqlled the vovmalized.

(41)

evidena [W) p-20]. So s summary - given adafasef Dn, Knl®) s on empidcal

estimake of how close f(y}x,w) irfo 9 (y/x), and The postevior /J(W/DnB Pun‘r move

Pmba[o;/,}y olemi/y near w the smaller this estrmate is (/7140%4\7 f)



Remavk As a KL divegenc K(w) is always non—mgaﬁw’. and by defintion the
?uam@ Lo (w) is non-negative, but #is possible Kn(w) <O (although
Kalw) 2 — 5“), For our puposes the difference befween wiing Ln
or Ko isJMfa shiff in the energy by a constant Sn inclepenclent of w,
and either will o (bul noke $n is a random vaviable a/J/JLC/e/Dendﬂ on Dy )

2. The ob)'edx of thevmodynamics

Thenmodynamics s the study of macwsepic dbservablen (suchas encigy, volume, pvessuire
ond mole numbers | associated fo equilibrium states, and i central problem is fo predict
the equilibvidm stake which eventually vesults affer o conshaint is vemoved from a
system cuwt’VlHj in equilibvum [Callen, §1] e prnciple governing fhe Hheony

is that theve is a quantify, The enhopy S, whichisa function o the enegy U,
volume \, and mole number (<) N, and which is maximjsed afeyu////mam.

The fundamental relation is this funchonal dependence

S=3S(UV,N) (51)

E\/euj wmce/mlg)e ﬁqevmoc‘ymamfc aﬂ‘n’bu/e 07»”%4? Jyf%em [ /ZVID{,U)’I once f’ﬁff
fun clamental velahion is known [Cﬂ/len, f‘ZcP]_ Sine 2fav >0 by hypotheais,

s equ[m/enf /9y the invene function the svemto Rnow the Fundamental velation
inthe Hollowing form

U= U(s, Vv, N) (r.2)
The WWN%@ Us, VN ave called extennre siha fhey arve additive ouprwm/ponenf

subsysferns- The infensive ﬂlermodymam/t parame fews do not hare /14/’//01/0/0@/7\
ancl ave defined as parfil demafives oL either (1) or (J-2)



C DLT2)

©
U
T = 7S feVleeerwe
P=r- %% presiure (6.1)
M= 3%%/ elechochemical Poknﬁ'al

d) = TdS — PdV +/md/\1

To see that these “definitions" of T, P agree with your bachjwound /emw)ec}je of jLCWlIDQrdﬁJVE

QVIC[PV'(’/JIMV? Jee [(a//en) 524{_/ §2-J: §2_7]’

EDLOW\E|P— In O\Simpfe idedl gan [Ca“evx/}/ﬁﬂ
s = wsrurnl [2TENRTT) (e

where ¢ is a constant depend/ng onfhu gas (a{ﬁwu@t« i#is onstant a cvose Sim/lar "’ ganes )

and R is the “univenal ”75«4 constant

Tnprachice thevmodynamics is often done in one or another “representations” comesponding

Jo Legendre hansormations of U. Hm%emaﬁ‘ca((j speaking his ic only valid locally

(sine e.g. U need not be 3/oba//j wonvekw.r -\ and this subtlefy is [in my o/olh/bn)
the main vecson fhesmodynamics e ave hard for mathematicians Fo vead, so be
careful | [Callen, §5 ] Nonetheless this method is remarkably powerful in freating
systes in contact with heat or pressuve reservorrs. If will fum oul that the Gibbs

mgwenmmn is the one mosz‘appmpwbkﬁ SLT.

It is fav pom obvious what1he a/)pm/)w‘afe extensive thermodynamic pavameten are
for ST Sowe insteacl begin with fhe lyln/‘cm;wp/'c" clegrees of freeclom and the
statishical mechanics of SLT [Callen, ﬂf]g%m which U, SN, N emerge an averagen.



3. Stuhshial mechanics #ngmm leavning 1heow

We formulake SLT ap a. “Cibbs ensemble [/4 4651, (PLOWT in which we /jmagine

the leaming puaos as o physical sy in contact with a thermal and pressure reservoir. A+ the
moment i+is not meant o be clear what this means; this we leave fo later. The

F’wgs('ca) ijs%em consisk af a,r/oa(emé states and the Hamiltonian which as(gns

+o each stale it energy.

Def™ The space of (micwswopic) states is W, viewed as a measure spae

with the Lebmyue mecaure doo

T is shandard in the slafishical mechanical pornt of view on optimisation theoyy to fake

the Hamioman 4o beﬁw@) whichinourcae is nLa(w) or nKa(w) (<f (2.2))
This “random" Hamilfonian a/e/oemb on the vandom vaviable Do gnd mecwures

fhe violation of the pumany conshaint (modelling the pue c//;r/n’bu/v‘on) buf we

shoulcl ot ignore the pror Flw) which effechrely imposes a se ondavy conspaint

(if ¥(w) vanishes sutsicle some madiv, or /sj'uwf e xfremely imall, we have

conshamed the rearch forsolufions i states within that /'Oid/},w)_

Lo shor), the prior plays the role of walls containing a qas (ol-lecut insofar
as the walls con<hain the Poxf/’b/e values a,’ﬁ/oor/'/fon coordlinates of gao /oarﬁb/«%)

Example  Suppose W = R* (ignove that this is not compact, s not impovfent Wightnow 3/ and

\ “W\l
$u) = (onzyle exp(- 1) d ()

Clogf(w) = Zlog(ame) + L ;L'Zf\ W,

The me(jaﬁu\e log probabilily cicts like o polential evergy with asrociated
force — J( logf( W)) = g_‘z— @y, e a simple havmonic orcillator
with sp¥ing constant &~



The (mndom) Hami/}vman {ncoypom}inﬁ hoth ewevgieﬂ is

Ha () = nKalw) = 7 log () (2.1)

the sucdion 0}0 (2.) and (7 1) this is

’/llq(w = ODV)S + Z

=\

L4 . d w =
(X W) “ /3 2 ZJ:\ J
Accoreling fhentothe standard devivation LA, §465] of the Ciibls ensewmble

under some conshaint which dlictale thal the stale lieo tin W' =W #pe pwba bility
dem@ associaled o the Jydem bemg in stcde o is

Bo‘}-& l — Hv‘(w)
P (w0 [ DY o = wk € A (¢2)

Bollz ’-/QHH(W)CI . .
whee £ = | € W is the normalisation tonsdant This s called the

Boltz mann disfn'buﬁon) where /§ = l/T is The mvene Jempemﬁ/m Cleavlg/ when
ﬁ = and W'=W we necover the Botgem‘an Po&J—enDr (4.4)

oH‘% le)Aw _ F(Wle>c\w

(£32)

otz S}
zB = 7%

Bolf
In physics the Pa\/H—l'on Fanclion Z- is viewed as a funchionof. T, V, N by Jel%»nj ﬁ = ‘/T
and mfn\cﬁnj The krﬂegral Jo states W'S W sonsident with the given valuer V, N o the

ofher thermudynamic Pammefew- The c(epema'ewm on 1, N posen no problem from the
stabisheal ,oomf af view butthe meaning of \/ /s camently unclear.



Tnspired by 7he vole of lcm/bemy‘uw in the Boltzmanm dispibutisn we imwdue the %Vmperfd
Posk’lfl()f [VU, P 20 ]

| —" KV\(W)
Fﬁ(w’Dn) :2 Y(w) e /3 (q,)

o o -n ’4m(w)
Zon :Zn(ﬁ) = jdw P(w) e F

sothat (8.3) holdls as an equaw for any /3 between the Boltzmann dispibufion and the 7L€V2/I/D€VP({
Posjrevior (nole that-fhis agreement mohvades the l//a’ in (&),

_D’en[_rL We clenole the expedm‘v'on of F(w) wih m/oecHo the fempemd/owlcw‘or by

{ —nBK, (W)
Ef () = 37 [ 4esee (4.2)

fom a )Dhgxl'ca//)o/ﬂf of view the “/eavmnﬁ machine" af@?m//bmm han c macwicopic
state chavaclensed by exdensive paramelen fo be infroduced in the nextsechion, but at
a vnicroseopic evel mmdergm mP)’d Hansitions befween stales of many different
(micvoscopic, re- per micwstnke ) energies given by Hn This picture is nof
abshact an it may seem - This Jydem s vews similavto the in silico system uhich

afewmpts o_qenerate samplea Fiom the postenior woing Hamilfonian [Monte Carfe.




4 Aveage energy

ij hlz(nﬂ averuges with respect fothe Boltzmann clishibution we can ﬁnally imeduce
the macwo scopic Thesmodynamic pavameten implicit in SLT.

The average evergy U o he JVJ}ZEV}’I inhocuced ahove s
— [ o] D)[ nKnls) — 7 log F(w) | (j0.))
= w L[k ] € Vg EEL- gy ]

The quavﬂ%j Ge(np) = E ’f/[K”‘(W)] s what Watanabe calls the Gibbs
Paining enor, which in lightof (3.2),(33) isinthe care of an exponential
class of models (2) the vonbvibufion fofhe avevage energy () fiom the loss
and the empincal enhopy [W, Def* 18] [w, § 6311

The 7(,{01;4{7’75@/ Eff [“lofﬁ/w)] is the contibufion fo The epergy from inlevachion
with the prior — this ferm will be large iFfor example Flw) is Gausrian (1ee
(71) ) with a cmall vaviance, bufl our /aaw%‘c/e/) (1hink Markov cha/m) spend

o lof of fime far away From the ongin where Fhe “force exerfed by he pyior

05 )argfe.

We now examine bo contibutrons o (J /n moore detarl

L



41 Gibbs %m/m‘nﬂ enor

Bj (2.4)} Kn(w) = —S- 7+ L., (W) 5o by [W/HC, Theovem U | e have
£ _ A B
VLEW[KL/\(U’.)] - YLKV. ([/Oo) + /@ + Um /l/f + Of ({) [ID,S',()

wheve [ is a sequence ot vrandom vaviables, E[U‘“]: O and E[(U“)l] <1 (heve
EL-] means expectation with respectfo the datoset ) aucl w, is atue pammefw

The indicatec] Tevm 7/1/‘60 a onpibution AT +o fhe energy U.

Note that +his clmamh'fry is s#ill a random vaviakle depencing on the dataset D).

To FMH%'S in aymore familiar form, recadd [W/ Theovem 6. & | that theve is a
random vanable G;Z such that maf(ﬂ) — Gf converges in law an n— 09 and
by }:W)ﬂ/leo;aem 6.10] (here expectodions are with reapect-o Dh)

Ela] = 7 —v(p)

where A ic the RLCT and q/(/é) is the J/ﬁf]M{QV Fluctuatrion.

froblem 1 Lwhal is the physical meaning of v(£) 7



4.2 Conﬁgmmﬁoﬂ enhopy of Wo

Lef wr examine the Ef [ log 50(“’)] fevm in the ccve where (P, 9,7)
IS regu/alf. B\j definihion

EL Lyl ] = 2o f oo 30 &

T, (w4l
We can wrile [W) Remark. HLIL] m v‘EﬁMlCchcwe £, (W): K{ud = T U
o loal wordinale U = (U, ., Uetd) amundﬂmpoimh wo 2 W.= {wﬂ]o{ \
Then an n—> 00 wre have by 1he Lap/a(e appwxz’maﬁon

( —HFK(V“) + [n —ih(u\d).qd
Z 2 ; J‘udlofi (rlw))I(e) e f dux
where U 15 a small neighbourhood of wa . Applying the Laplace hansfosmation

again, and ignonng 5 sine it conhibutes only o linear fevm, we obtain

n

’_l* (ﬂ)d/?_ Jo(wo()logf[wd\
S < | H( ) ™

. (0 (d)
Sufapogmg the €|\ﬂ8ﬂ\/all,{€’/l O‘f Hu Heasian neav tox are 7\ A, -, )\ oL

o

( (277 )d{]_ d/,_z )O(UJK)\OgDO(Wd)
Zon

"~ <IN Y o

ol

nc

Assuming for 5/'/"[3//‘07’11) that /\(0(&): )((I) is mdepem]evﬁ F o« for [2csd
and m‘ﬁng A =S F(wa) we howe



dls 4/,
P 0 w = /5) (l]‘ A— 0 —
Eollg3ed 1= s Sl 5

here 5"(\».,() = T(w")//.\ and 53» = — ;f(wd lejc’(wfx) _

“The c{uavﬂ‘iﬁj’ Sj’ can be H/lovtal’\*o‘f as a wnﬁqumﬁon cm‘}v\?ply O‘fe Wo aaafnuL
The Pw‘or. To see this consicler fuo exam)b)@o) in which W, = {WO)WI}

e Wi W W
e—\j’ - é‘\j"
5)0 small S:f {Qfge
T (w) << I fws) J (w) = F(w)

Tn the sinqular care Ws is a complicaled analjﬁ‘c vavie%j , but arguably we
can stll intevpref EL [103 Fw) | an a measure of the enbopy of how Wo is
wnﬁguwd relafive oo F Noke thal an v increases p ")
terms bouncled away fom zew, and so Ef) [{057{“’)] Uowverge/,i‘/‘o the
confiqurational enwhopy in the above sense of 1wy we} S Wo where
Wiy, W are the ﬁ'n#ﬁfj many /oom/'? where the point RLCT egualr A

(e the “most Jimyc/t/ar" po/nh & W )

domfntﬂ‘ﬁ/} aﬂj

(2.1)



The entropy of the Boltzmann dishibution is
3 = — folw]:@(w)Dn) log (p(w15-))
— — EL[ tog¥) —nprale) — logZ 7 |

= EL[~logs() ] + nﬁEf[Kw(w)]—Ef[Fi] (1z.1)

€H+\'\7]°lj m@oomﬁryum‘hbh @V)’}‘VOJDH U‘E mor{'
& Wo wrd F sz’ngularpom)-

where Fr = "/OjZ: Is 7he free energy [W/ $1.42] which com be witlen

an Alogn — (m=1)Jeglogn + FI(T) Combining this with (10-51) 9)ves

= ;Ef,[»(oaj’(w)] + nfKa(ws) A+ Unm (15-=)

+ }lojn — (m—l)[oa\oﬂnﬂ- Ff\(f)%—or(l)

where the undevlined fevms reem #he imoskF S/‘gm/%‘canf Note that+his should
be Faken with a 7m/n ofja/faf/pmenf/ since he Op(1) ferm may Jjn principle
cancel witth other constant fevms. Nole E[Ff] pom/elrg%ﬁaa condtunt [VVl Covr 6. |FJ‘

Modulo these details, (13-2) is our desived fundamental equation (5-1) for The entropy,

and| log /'nspecﬁng it %ogef’her with the form (8'() of the macvoseopl< Hamilfontan
we are led 4o the idea that the thevmodynamic coorcinatesin SLT are . andl

1= \/é . We can /wfevpref 7n an o Rind a}ﬂ [(Samp//‘ny /‘em/bem%m‘e " which

contwls the noise scale inthe compavrison F Kot K (sceey [w, (I /'7)])4
Other thermodynamic coovelinates (9. & /2 F) may also he introduced.



Rewavk  for #he momenf we heaf n an confinuoun (in ovder 1o wnite expreas/ons ke

5971 ) and leave o later 4o make sense of 1his.

We can choosefo move fovward with the fundamental equechion in the form
S = S[Vlzﬂ) or switch fo the free enewgy .= "/Oj ZZ) which is more
standavd g/ven our starfing /oo/nf with a microscoplc Hemillonian. In order

fo devive fie exfensive ﬂ)evmodtjnamlk coovdinales oomjuljﬂfe fo the intensive

coordinales H,ﬂ we wonsider fhe partial clevivatives

2 o
((%.1)

9 o ER
aw e | 3gla

Looxe[j speaking the vate of increane of Fo with n is the Bayes genemlisation
evvor 85 (aHeowfaF kmpemfuvt /?21) See [W/ Theorem |- 2] We can examine

the ofher exfensive 7(/10“/,}7'}?1 59? Fa wing [W, Main Formula I, 3 ?q] ,
[\/\/, Main Theorem 6.2, P |7Lrj] according which

F:\ = f/\lOSVL - (M")]oglogn + Ff(?) i Ol’(l> (14 2)

where

) = ol Jaf )

Tgnoringthe 0p (1) ferm, we have

35 e = 1)

2 .
Froblem 2 Undewtand this 7%0{&4%4:\7 ElE P



DLT2

The WeVmudf/nam/c Dictionavny

ﬂﬂ@vmodynam:‘cr Singular Leavning Theow
Micvoscopic Hamiltonian nKn(w) — /3'_ 10950@0)
Boltz mann dishibution Bayesian posterior
Enhopy S RLCT A 4 ...
Tutensive wordinates n, A
Extensive coordinates Genewlisation ewor, 7
Fint-order phase fransifions .

Second -order Pbme From ot ons



6. Examples of hinking %ermoa{ynam'/"ca/{y

61 Trmining and refrgermtion

What dves it mean fo Frain a neural nefwork from #he point of view o 1his clfcy‘z‘onavy.7
Spea/aa'ng loomlg;) yunning SaD at a fixed learning rate is similav fo the “burnin’
penocl of oo MCNC sam pler, so that mnning SGD for K sleps and #hen

refurning the weight is similar fo sampling from Fhe Rayesian pasterior ata

Hfixecl tempevatuve (veladed o the leavming vale ). The precire relationship behween
SGD andl the posterivr is an open problem, but nonette Jeos 1his analogy s

worth knowing , and +ov the sake o illwdation we will asrume the analogy

is precire in the following-

Umallj i vanilla SaD (e o momentum ek ) +he learning raje will be
“annealed” (e decreared ) prer the coune o fm/'m’/\a _This conesponds
o J/owa decvreaping he temperature of the learning machine o Secton

(heve ((J/D(,u/g” means 7(,1@,'—57%4#(/ ve. the samphng pvoceos han fime 1 between
fhe decrementt in T fo vefurn Jo equililbnum Y - Thjs wonenbrales the
Pog}em’or/b’o)%zmann dishibufion near fwe/oamme%cm sothat one s
more likely fo sample “900d" models. Decrearing the lemperatare of
the !eqvnm7 machine requires work, and somewheve fo Pransfer the exceas
heat; #nat is, peural network fraining s a refrigerator [Callen, Si4-6]
This should be faken litevally - even though the Temperature and enhepy o

a /ea/nimg machine may Jeem abshact, the heat and work involved in

m‘ﬁigemﬁnj them is 7(,{//6 real (sce &007/5& datacenter cooling bills )



6.2 A recipe for research problems

The implicedions of aﬁd'j ﬁ)evmodynaw\k point Aview on cleep learning ave
4](/1&( PVO{;JMHOJJ because it suggeals we should be more ambitioas abount
designing Lomplicoded lemmn9 machings (engmw.’ )

Meja Roblem  [ake any machine in o Thevmoclynamics fextbook cind Jee

what iFmeans as a dwl‘cjm for a /eavn[ny machire .

Somie examp)@ :

Foblem 3 Cuve a:f%ermudynaM/tﬁEaﬂneﬂfcr//mm{er—leamfng / fine—tuning
an a coupling of Hoo feavning machines (e [HIKE, §3.47] >

Problem & Give a f%ermadyzfzam/c Hreatment o met -leavning.

See over/em[ for sSome informal usrage 079 fevms that could /ooalemﬁa//y b{g)&/wem
a mathematical Preatment.



Mergeable Fragments

Similarly to how a software engineer merges together pre-existing libraries (or systems) with
their code in order to build useful programs, an ML engineer merges together code fragments,
data fragments, analysis fragments and model fragments on a regular basis in order to build
useful ML pipelines. A notable difference between software engineering and ML engineering is
that even when the code is fixed for the latter, data is usually volatile for it (e.g. new data arrives
on a regular basis) and as such the downstream artifacts need to be produced frequently and
efficiently. For example, a new version of a model usually needs to be produced if any part of its
input data has changed. As such, it is important for ML pipelines to produce artifacts that are
mergeable. For example, a summary of statistics from one dataset should be easily mergeable
with that of another dataset such that it is easy to summarize the statistics of the union of the
two datasets. Similarly, it should be easy to transfer the learnings of one model to another

model in general, and the learnings of a previous version of a model to the next version of the

same model in particular.

There is however a catch, which relates to the previous discussion regarding the equivalents of
test coverage for models. Merging new fragments into a model could necessitate creation of
novel out-of-distribution and counterfactual evaluation data, contributing to the difficulty of

(efficient) model evolution, thus rendering it a lot harder than pure code evolution.

https://blog.tensorflow.org/2020/09/brief-history-of-tensorflow-
extended-tfx.html
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