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DLT Lecture 2 : Thermodynamics of Singular Learning Theory wnyw

In the first lecture it was argued that deep learning is an emerging general purpose

technology , and that theory has an important role toplay .

An analogy was made to

the role of thermodynamic theory (or more precisely its precursors) in enabling the

development of steampower in the first industrial revolution .

This analogy was

not idly chosen : thermodynamics and statisticalmechanics alsoprovide a useful

framework for understanding Watanabe's singular learning theory in general and

deep learning theory in particular.

We will assume familiarity with thermodynamics atthe level of Kallen ] and

the basics of singular learning theory [w], and use the language of the former

to give an accessiblepresentation of the latter.

It may seem strange to use thermodynamics (which is expressed in the language of

physical systems and concepts like energy, entropy, volume, pressure, etc . ) to present
a topic in statistics . Surely there isn't anything analogous to pressure in deep

learning theory ! However it has long been understood that the fundamental

principles of thermodynamics extend far beyond gases in bottles and ferromagnet .

Thejustification for this lies outside the scope of this lecture, butyou can
consider the information- theoretic interpretation of entropy [Callen, 517. I]

and the origin ofmacroscopic thermodynamic coordinates in symmetry-breaking

explained in Kallen, 521 ] .

This leads to a precise thermodynamic dictionary for singular learning theory,

exhibiting which is the purpose of this lecture .
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1. The objects of singular learning theory

For concreteness we consider a triple (ply Ix, w ), 9 (Tbc), Tlw) ) associated to a class

of functions f-(x, w) as in [MDLGI , 53, Appendix A] , so f : IRLx W→ IR
"

and

ply Ix, w) = k¥12 exp ( - IH y - Haw) H
'

)
.

Cz . 1)

Here g (ylx ) =p (y 104 Wo) for some Wo EW ( i - e . we assume the true distribution

is real isable ) and Ylw) is a prior distribution on a compact space WE
Rdof weights .

The case where the, w ) is a neural network is of interest for deep learning theory ,

but nothing we willsay is specific to this case, and the dictionary we develop holds

for a general classofmodels, notjust those of exponential form 12 -D
.

The central function in Singular Learning Theory (SLT) is the Kullback- Leibler (KL)

divergence (
"distance

" ) between the true distribution and the model

Klw) = If 9 (yl x) log pYy% 964 dxdy .

Cz - z)

In the situation of 12.1 ) we compute (see p . 3)

Hw ) = If A flaw) - f- (x, Wo) IT q (x) da Cz . 3)

which is clearly a measure of the error associated to w EW. In practice we

can only interact with the true distribution by drawing samples Dn
= { (ai

, y . . ) }in ,
and the empirical KL divergence associated to such a sample is [W, p .

ST

knlw) = t ,€
,

log ( 2. 4)

=
- Sn t Ln (w)
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where Sn = - thEI , log qlyilxi ) is the empirical entropy and

Ln ( w ) = - I .€
,

log plyilxi , w) ( 3. i)

is the
"

log loss
"
or negative log likelihood (we follow the notation of [WAIT here as [w]

uses Lulu) to denote the likelihood . Note that e-
"4th

= IT- E
, ply .- loci, w) is the

likelihood
,
modulo factors of 9Hi) ) .

In practice we do not have access to q and we

may not be able
to calculate kn or Sn

,
butwe can compute Ln (w) which is maximised

when Knlw) is minimised ( as q is fixed ) - In the situation of 12 -
l)

n

Lnlw) =
- II log (cz,¥z exp ( - tell yo. - Hai , w) 1/2) )i =L

=

- th - Mz log (2K) - IH Yi - Hai, w) H2 ) ( 3. 2)

=

'I log (2x) t th EE
,

I Hyo -Hai, w ) H2

is up to a constant thatdependsonly onM, and the factor
'k
,
the mean -squared error .

If IE Cklw) ] Loo then we have convergence in probability kn (w)→ Klar) for all weW
,

and if El 14427 so then Lnlw)→ KIWI - S in probability where S is the entropy

of the true distribution (W, p . 6]
.

So heuristically

kn = const t IMSE - Sn ( 3.3)

The next important object is the posterior , which using Bayes rule is

p (Wl Dn ) = P ( Dal w ) P (w ) ( 3.4 )

p ( Dn)

we have decided to write 91W) for plw) .
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Hence

n

p (wt
Dn ) =
I

Ylw) IT plxi.yc.tw )
p ( Dn) i -_ I

= plot 91W)
.

plyilxi.wjqc.ci ,

" " t

Notice that we model only the conditional distribution ply law) , so we assume q (x)

is given and set play Iw) - ply Ix ) 9k ) .

We note that the factor IT
, -59ki ) does

not depend on w, so

p (w/ Dn )
=

TiE9
ycw, e-

nlnlw)

pl Dn)

= # Tcw ) e-
hhnlw)

(4.2)

where using that plwl Dn ) is a probability distribution

zn = Jdwylw) e-
"↳ (w)

.
(4. 3)

This quantity is called the evidence . Using ( 2- 4) we can arrive at an

equivalent formulation of the posteriorwhich is closer to thermodynamics . By 14.21,

plwl Dn ) = In y (w) e-
nknlw)

e-
nsn

= z÷ y ( w ) e-
nknlw)

(4.4)

where ZnO = en
Sn
Zn = fdw THE

""")

is called the normalised

evidence [w, p - 207
.

So in summary : given adataset Dn, Knlw) is an empirical
estimate of how close plylxiu) is to 9 ( Y Ix), and the posterior p (Wl Dn ) puts more

probability density near w the smaller this estimate is ( ignoring Y) .
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Remark As a KL divergence Klus) is always non -negative and by definition the

quantity Ln ( w) is non-negative, but it ispossible kn (w) < O. (although
kn (w) 7 - Sn )

.

For our purposes the difference between using Ln

or kn isjust a shift in the energy by a constant Sn independentof w,
and eitherwill do (but note Sn is a random variable as itdepends on Dn ) .

2. The objects of thermodynamics

Thermodynamics is the study of macroscopic observables (such as energy, volume, pressure
and mole numbers ) associated to equilibrium states

,
and its central problem is to predict

the equilibrium state which eventually results after a constraint is removed from a

system currently in equilibrium [Callen, 517 . The principle governing the theory

is thatthere is a quantity, the entropy S, which is a function of the energy U,
volume V

, and mole number (s) N, and which is maximised atequilibrium .

The fundamental relation is this functional dependence

S = SIU, V, N) .

15.1)

Every conceivable thermodynamic attribute of the system is known once this

fundamental relation is known [Callen, p .
28]

.

Since
"lou >O by hypothesis,

it is equivalent by the inverse function theorem to know the fundamental relation

in the following form

U = U ( S, V, N ) co- 2)

The quantities V, S, V,N are called extensive since they are additive over component

subsystems - The intensive thermodynamic parameters do not have thisproperty ,
and are defined aspartial derivatives of either 15- t) or 15-2)

.
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T =
K
as temperature

P = - 2¥ pressure ( 6.1)

µ
= Ifv electrochemical potential

du = Tds - Pdx tMd N

To see that these
"definitions

" of T, P agree with your background knowledge of temperature
and pressure see [Callen, 52-4 , 52-5,52-7 ] .

Example In a simple ideal gas Kallen,3-4]

S = Nso t NRin ( (Fo]LYIN J
'""

) ( 6. z)

where c is a constant depending on the gas ( although it is constant across
"similar " gases )

and R is the "universal
"

gas constant .

In practice thermodynamics is often done in one or another " representations
"

corresponding
to Legendre transformations of U . Mathematically speaking this is only valid locally
(since e.g. U need not be globally convex w .

rut
- V) and this subtlety is l in my opinion)

the main reason thermodynamics texts are hard formathematicians to read, so be

careful! Kallen , 55 ] .

Nonetheless this method is remarkably powerful in treating

systems in contact with heator pressure reservoirs .
Itwill turn out thatthe Gibbs

representation is the one mostappropriate to SLT.

It is far from obvious whatthe appropriate extensive thermodynamic parameters are
for SLT. So we instead begin with the

"

microscopic
"

degrees of freedom and the

statistical mechanicsof SLT [Callen, It] from which U, S, V, N emerge as averages .
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3
.

Statistical mechanics of singular learning theory

we formulate SLT '

as a
"Gibbs ensemble

"

[A, I 4.6.53 , (PLOW] in which we imagine

the learning process as aphysical system in contactwith a thermal and pressure reservoir . Atthe

moment it is not meant to be clearwhat thismeans; this we leave to later. The

physical system consists of a space of states and the Hamiltonian which assigns

to each state its energy .

DEI The space of (microscopic) states is W, viewed as a measure space

with the Lebesgue measure dw

It is standard in the statistical mechanical point of view on optimisation theory to take

the Hamiltonian to be the loss
,
which in our case is n Ln ( w) or n kn ( w ) ( of . (3.2) ) .

This "random " Hamiltonian depends on the random variable Dn and measures

the violation of the primary constraint (modelling the true distribution ) but we

should not ignore theprior Kw) which effectively imposes a secondary constraint

( if Tfw) vanishes outside some radius, or isjust extremely small, we have

constrained the search forsolutions to states within that radius) .

In short
,
thepriorplays the role of walls containing a gas (atleast insofar

as the walls constrain the possible values of position coordinates of gas particles) .

-

Example suppose W- Rd ( ignore that this is not compact, it's not important rightnow ), and
-

Slu) = ¥pdk exp f- IMEI) can

- logy (w) = ¥10915116 ) t t ' ft - Ejd= ,
wj

The negative log probability acts like a potential energy with associated

force - Ey. ( - logyH) = - IT wj
,
i - e . a simple harmonic oscillator

with spring constant 8-2 .
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The (random) Hamiltonian incorporating both energies is

Hn (w ) = nknlw) - t log Tcw) .

( 8. 1)

In the situation of 12 - t ) and (7. 1) this is

Hnlw) = const
. t SE

,

Illy i -Hai, w ) Http - I . IT - Ejd ,
WE

According then to the standard derivation (A , 54.6-5] of the Gibbs ensemble

undersome constraints which dictate that- the state lies in W
' EW the probability

density associated to the system being in state w is

Z
Boltz e

- B Hn (w)

p
Boltz
(w I Dn ) dw =
I

dw ( 8.2)

where 21301¥ = Jw ,
e-P

" " "
dw is the normalisation constant . This is called the

Boltzmann distribution
,
where p = YT is the inverse temperature . Clearly when

f. =L and W
'
= W we recover the Bayesian posterior (4.4)

p
Boltz

(w I Dn ) dw = plwl Dn ) dw
( 8.3)

zBoHZ .

= In

In physics the partition function 2B
""

is viewed as a function of T, V, N by setting B - YT

and restricting the integral to stales W
'EW consistentwith the given values V, N of the

other thermodynamic parameters . The dependence on T, N poses no problem from the

statistical point of view butthe meaning of V is currently unclear.
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Inspired by the role of temperature in the Boltzmann distribution we introduce the tempered

posterior [W, p . 20]

PP (w I Dn ) = Tony (w) e-
" Pkn")

(q , )

In = In ( p) = f dw y ( w) e-nfknlw
)

so that 18.3 ) holds as an equality for any B between the Boltzmann distribution and the tempered

posterior (note thatthis agreementmotivates the Yp in ( 8.1 ) ) .

DEI we denote the expectation of few) with respect to the temperedposterior by

EE ( Hou) ) = z÷fwffw ) Slu) e-
"Pkn Mdw ( 9. z)

From a physicalpoint of view the
"

learning machine
"

atequilibrium has a macroscopic
state characterised by extensive parameters to be introduced in the nextsection, but at

a microscopic level undergoes rapid transitions between states of many different

(microscopic, le . per microstate ) energies given by Hn .
This picture is not as

abstract as it may seem : this system is very similarto the in silico system which

attempts to generate samples from theposterior using Hamiltonian Monte Carlo .
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4 . Average energy

By taking averages with respect to the Boltzmann distribution we can finally introduce

the macroscopic thermodynamic parameters implicit in SLT.

I \

The average energy U of the system introduced abone is

u = f dw p
Boltz (w I Dn) Hn ( w )

P I
= f dw p (w I Dn ) ( nknlw) - p log Ylw) ) ( ios )

P B
= n Ew ( kn (w) ) t Yp Ewf - logycut]

The quantity Gt (n , p) = Efwlknlw ) ] is what Watanabe calls the Gibbs

training error , which in light of (3-2) , 13.3 ) is in the case of an exponential
class ofmodels (2 - t ) the contribution to the average energy U from the loss

and the empirical entropy [W, Def
"

I . 8]
. [W, § 6.3 .

I]
.

The quantity EL [ - 10991W) ] is the contribution to the energy from interaction

with the prior - this term will be large iffor example Ylw) is Gaussian (see

( 7.1 ) ) with a small variance
,
but our particles (think Markov chains) spend

a lotof time far away from the origin where the
"
force " exerted by the prior

is large .

We now examine both contributions to U in more detail.
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4. I Gibbs training error

By (2-4), kn (w)
= - Sn t Ln (w) so by [WAI C , theorem 4] we have

nE! ( kn (w) ) = n kn (Wo ) t t t UnFtp t Op ( l ) Cio
.
s. D

=

where Un is a sequence ofrandom variables ,
E[ on ] = O and E( ( Un5) a 1 ( here

ECT means expectation with respectto the dataset ) and Wo is a true parameter .

The indicated term gives a contribution IT to the energy U .

Note that this quantity is still a random variable depending on the dataset Dn .

To put this in a more familiar form , recall [W, Theorem 6 . 8] that there is a

random variable GE such that natch) → att
converges in law as n → a ,

and

by [W, Theorem 6.10 ] ( here expectations are with respectto Dn)

E Cat ] = Fs - up )

where X is the RLCT and rt) is the singular fluctuation .

Problem 1 What is the physical meaning of vts ) ?
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4. 2 Configuration entropy of Wo

Let us examine the EI ( log Ylw) ) term in the casewhere ( p , 9,7)

is regular . By definition

EI ( log 9147 =

z.tn/logyCwDyCwje-nPknlNdw3nlua1
We can write (W, Remark 1.14 ] in regularcase kn (ua)= Klux)

-

I
- un in

a local coordinate Ux = (uan, . . .

.
Uh

,
d) around the points wa of Wo

= {walk
.

Then as n→ as we have by the Laplace approximation

= z÷ § fu
,

log ( Hua ))yCua) e-
nPK ( nd ) trap 3nlub.ua

dua

where Ua is a small neighbourhood of wa . Applying the Laplace transformation

again , and ignoring 3 since it contributes only a linear term, we obtain

i flwa) logflwa )
= E THE

l Hcpkxwasl
"

Supposing the eigenvalues of the Hessian near wa ane I 'd
,
. . .

,
DHL

= #⇐ the "'s "÷÷÷÷÷ a . . .

Assuming for simplicity that I = X
")

is independent of a for ki Ed

and setting A = Say (wa ) we have
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A

EEL logs last = (E)
"

{ log A - Ss ) ca ,

where I ( wa) =
71WhYA and Sy =

- § Flw a) logJ (wa) .

The quantity Sy can be thought of as a configuration entropy of Wo against
the prior. To see this consider two examples , in which Wo = {Wo, w B

W W
• W I

c-
y c- y

•
Wo

•

W o
• w ,

Sy small Sy large
Ftw . ) ← if two) J two ) a Flw .)

In the singular case Wo is a complicated analytic variety , but arguably we

can still interpret EI [ log Kw) ] as a measure of the entropy of how Wo is

configured relative to Y. Note that as n increases , e-
nknlw)

dominates any

terms bounded away from zero
,
and so EI ( 10971W) ] converges to the

configurational entropy in the above sense of { w b . - -

,
Wm ) E Wo where

wi, .
.
-

, Wm are the finitely many points where the point RLCT equals 7
( i - e - the " most singular

"

point of Wo ) .
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5
. Entropy

/

The entropy of the Boltzmann distribution is

S = - J dw pplw I Dn ) log ( pp (w l Dn ) )

= - IE Pw ( log 's Cw) - npknlw) - log 22 ]

= EEL- log Ylw) ) t np Eff kn Lud] - EI [ Fon ] ( 13.1 )
- -

entropy of configuration entropy of most

of Wo u.
rut

. T singularpoint

where Fon = - log Zon is the free energy (W, ft- 4.2] which can be written

as Hog n - (m - 1) log logn t FLY3) . Combining this with ( 10.5. I ) gives

= IEEE- logy (w) ) t npknlwo ) t X t Unip ( 13.2)
#

=

+ X log n - (m - 1) log logn t F?(3) top ( t )
=

where the underlined terms seem the most significant .

Note thatthis should

be taken with a grain ofsaltatpresent, since the Op Cl ) term may in principle
cancel with other constant terms . Note El FI ] converges to a constant CW , Corr G .

I ]
.

Modulo these details
,
113 -2) is our desired fundamental equation (s . 1) for the entropy,

and by inspecting it together with the form (8. l ) of the macroscopic Hamiltonian

we are led to the idea that the thermodynamic coordinates in SLT are n and

T=
' lB .

We can interpret Yn as a kind of
"

sampling temperature
" which

controls the noise scale in the comparison of kn to K (see e -g .

[w, H - 19)] )
.

Other thermodynamic coordinates (e.g . 3 in T ) may also be introduced.
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Remark For themoment we treatn as continuous (in order to write expressions like

Fn ) and leave it to later to make sense of this .

We can choose to move forward with the fundamental equation in the form

S = S Cn , B ) or switch to the free energy Fon =
- log 2h, which is more

standard given our starting point with a microscopic Hamiltonian .

In order

to derive the extensive thermodynamic coordinates conjugate to the intensive

coordinates n ,B we consider the partial derivatives

⇐ Fon
, Ip Fon .

114.1 )

Loosely speaking the rate of increase of Fon with n is the Bayes generalisation
error Bg (at least at temperature f- 1) see [W, Theorem l - 2 ]

. We can examine

the other extensive quantity Fp Fon using (W, Main Formula I, p . 34 ] ,

[W, Main theorem 6.2, p . 174 ] according to which

Fon = X login - (m - 1) log log n t F'43 ) t Op H ) (14.2)
n

where

FR (3) = - log ( fduty!att
'- '

e

-Pt +AP" ) ) cue .rs)

Ignoring the op (1) term, we have

Fp Fon = Fp F'43)

Problem 2 Understand this quantity Tp Fon .
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The Thermodynamic Dictionary

Thermodynamics singular Learning theory

Microscopic Hamiltonian nknlw) - tplogtlw)

Boltzmann distribution Bayesian posterior

Entropy S RLCT X t . . -

Intensive coordinates n
, B

Extensive coordinates Generalisation error, ?

First -orderphase transition '

{ see DLT①
Second - order phase transitions
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6
. Examples of thinking thermodynamically

6.1 Training and refrigeration

what does itmean to train a neural network from the point of view of this dictionary ?

Speaking loosely , running SAD at a fixed learning rate is similar to the
" burn in "

period of a MCMC sampler, so that running SAD for K steps and then

returning the weight is similar to sampling from the Bayesian posterior at a

fixed temperature (related to the learning rate ) .

The precise relationship between

SAD and theposterior is an open problem, but nonetheless this analogy is

worth knowing , and for the sake of illustration we will assume the analogy

is precise in the following .

Usually in vanilla SAD ( t - e . no momentum etc ) the learning rate will be
"

annealed
" ( i.e . decreased) over the course of training . This corresponds

to slowly decreasing thetemperature of the learning machine of section 3

( here "

slowly
"
means quasi- static, i - e . the sampling process has time in between

the decrements in T to return to equilibrium ) .
This concentrates the

posterior / Boltzmann distribution near timeparameters , so that one is

more likely to sample
"

good
" models

. Decreasing the temperature of

the learning machine requires work and somewhere to transfer the excess

heat; that is, neural network training is a refrigerator [Callen , 54
- b)

.

This should be taken literally : even though the temperature and entropy of

a learning machine may seem abstract, the heat and work involved in

refrigerating them is quite real (see Google 's datacenter cooling bills ) .
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6.2 A recipe for research problems

The implications of a fully thermodynamic point ofview on deep learning are

quite profound, because it suggests we should be more ambitious about

designing complicated learning machines (engines ! ) .

Meta Problem Take any machine in a thermodynamics textbook and see

what itmeans as a design fora learning machine .

Some examples :

Problem 3 Give a thermodynamic treatmentof transfer - learning / fine-tuning

as a coupling of two learning machines (see [HKK, 53.43 ) .

Problem 4 Give a thermodynamic treatment of meta - learning .

See overleaf for some informal usage of terms that could potentially be given
a mathematical treatment .



https://blog.tensorflow.org/2020/09/brief-history-of-tensorflow-
extended-tfx.html

D
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