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In a first orderphase transition the temperature orpressure are varied, thereby

changing the Gibbs potential in such a way that two local minima (whose
" identity

"
and separation are preserved by the variation) switch roles as

the global minima .

Each minima is a phase , and the different

material properties of the phase include differing values of molar energy,

entropy and other parameters [Callen , 59 I. In general we may use any
thermodynamic potential in place of the Cribbs potential and a

family of intensive parameters in place of temperature and pressure,
but the essential point is that first -order phase transitions are about

the configuration of critical values in IR (Callen , p . 2207
.

In a second order phase transition the
"

moduli
" of the thermodynamic

potential G (e - g . T, P ) are varied so that as a function of the extensive

coordinate (e - g .

V ) the potential has a degenerate critical point (typically
the result of multiple minima

"

colliding
"

as CT
,
P) → ( Tar

,
Par ) )

.
Thus a

second -orderphase transition is aboutthe configuration of critical points in

the space ofmoduli .

Following Watanabe we focused in DLTZO on the free energy

F = F ( n , B) = - E ( log f dw y ( w) e-
nfhnlw ) )

( l - l )

=
- E ( log f dw e

- B Hnk) )

where Hn (w ) = n Ln (w ) - Yp 109T (w), as our thermodynamic potential . Here

El- I denotes the expectation with respectto the dataset Dn .

The proposed
intensive coordinates are n

,B thoughtof as inverse temperatures .

But there is an

obvious problem : what is the analogue of the extensive coordinate V ?
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Watanabe discusses phase transitions in [W, Remark 6.17] (p → a) , (W, Table 8.2]

(which suggests the existence of phase transitions as a pointof difference between regular

and singular models ) and in more detail in [W2,59-47 and the lectures [W3T .

The above issue is sidestepped (perhaps correctly) by defining a
"

phase transition
"

to

be an infinitesimal came in moduli space along which the posterior changes
"drastically

" [WZ, Deth 297 , forsufficiently larger .

This is a subtle and imprecise

definition , some adoptamore pedestrian approach .

Suppose given an analytic function Vi W→ IR
.

We define

F- (nip, v ) - - Eflogfgw
, .gg?fjw)e-nP

"" ] ca.is

We can introduce a similar V-dependence to the average energy U and entropy S .

We define a phase to be a critical point of F (nips, V ) affixed nip as a function of V

F '
'

n '

phase IWn.

First -order phase transition phase 2
inn affixed fo .

IN B

(of [Callen , Fig . 9.47 ) ✓ msnzsns

> v

F " hi

Second-order phase transition ✓
(2-2)

Nz

inn at fixed B ✓
Nz

ht < Mz L Nz

(of [Callen, Fig . 9.6 ] ) ✓
> y
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I . Studying the free energy

Suppose 11=11
- H is the norm

,
and W E R2 with coordinates wi

,wz
.
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The minima of the free energy correspond to regions where the posterior is concentrated,
as detected by the projection V. Varying the parameters n ,B will vary the posterior
distribution (e -g. the location of its maxima in W) andgenerically this will also

cause variations in F reflecting these changes in the posterior . Hence we use

the geometry of Fas a proxy for the behaviour of the posterior .

Note that the average energy and entropy may differ between phases, in the sense

that averaging over the posterior near the shown regions in W (or more precisely
a range of level sets near Vo, Vi ) may give different values .

For instance the

function K may have
"
more singular

" critical points near { w I vlw) = Vi )

than near L w l V (w) = Yo } (indeed we expectthis) . One also distinguishes

phases by different values of higher derivatives ofthermodynamicpotentials .

A reasonable intuition is that each phase of the triple 439 ,T ) with respect
to the chosen V is a differentkindof candidate solution to the problem of

modelling the true distribution .
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The most natural examples of phases, or local minima of the free energy ,
are those associated to singularities of K (meaning a criticalpoint we w

where Klw) = O) .

An example of two phases associated to singularities Po, P,
is shown below :
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However it is important to note that notall phases are associated with points of Wo .

In general we expect a phase associated to any local minima of K in the following sense :

Hypothesis suppose that woe W has the property that for E sufficiently small, No = y (Wo ) )

K (Wo ) = in f- { K (w ) / Vo - EL Vlw ) L Vote } (4. 2)

Let EN ) = expl - FN ) ) and note that ( ignoring ECT )

U

Eko ) = dull fu
.
- e
EMON ]lu=v

.

= ¥u( ↳ dwycw ) e-nplnlw
) ) /

(4.3)

✓ = Vo

U

where Qu = { WE WI Vo - E < " Iw) < U } . Since Qu is semi -analytic the

asymptotic methods of (WI apply (see e - g . [W, 57.67 although this is not

sufficiently careful , and we are also punting on some details ) .
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Applying the resolution procedure to K
- K two ) on Qu yields

Cr. . )

↳udw T(w ) e-hp
↳ ( w )

= ↳udwycw ) e- np
( Lnlw) - Ln two ) )

e-up
Ln two)

= e
- up↳ two)

fowdwycw) e- hp ( Knbr
) - Knlwo) )

= e-nplnlwo
) Jadu*[at Scp, u )

where X is the RLCTof {w/ Klute Klwo ) } A Qu (this may be associated to

a point on the level set {w/ Nw)
= Yo} other than Wo , so be cautious ! ), and

Sfp , u ) = t
't'
e-PttPrt

31"
where 3 describes fluctuations .

Hence

quo ) = e-nptnw
" ¥ffowdu*%atslpm5Hu⇒

.

is -
z )

and so

F ( Vo ) = np Ln ( Wo ) t Xlogn
- (m - 1) log log n (5.3 )

- log (ITIS udukfgdtslp.us ]lu⇒. )

Note that the final term depends onB but not n . This is perhaps an indication that

phase transitions involving a variation in P are more subtle .
For themoment we

assume B -- Po is fixed ,
and n large enough so that we may neglect the log log term,

so that as an approximation

F ( Vo ) = up. Ln (Wo ) t X log n t const . (5- 4)
- -

energy entropy
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Since the RLCTX oflhe level set Lwlklw)=klwo) ) now is rational
,

Yo is a localminima of the free energy .

Thus associated to any local minima

of K in the above precise sense is a local minima of the free energy , that is, a.phase .

Some of these phases will be associated, asin (4.11, with global minima of K

but the learning process is governed by first-orderphase transitions involving non -global
local minima

,
as we describe in the nextsection

.

In summary
: classification of phases of the learning machine is closely related to

the classification (in the usual sense of singularity theory) of critical points of K

(or what is the same, singularities of level sets of K ) .

2. First-orderphase transitions

There can be no first-order phase transition involving two phases associated to

singularities of Wo as in 14.11 , because varying n cannot reverse the inequality
between their free energies , which by (5. 4) are determined solely by their

local RLCT. So consider the following more general situation
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where Wo,w,
EW are two local minima of K (writ . V in the sense of (4.2 )) , Vi - Klwi )

for Lool) and Qi = { WE WI Vi - E < Vfw) < Vite } for some small E .
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We suppose
Ktwo) < KIWI ) but I , < To where Xi denotes the RLCT of the level

set { w/ KIWI = K (wit }
.

We claim that this implies a first-order phase transition, where

phase 1 is preferred by theposterior for small n and phase O is preferred for large n .

We assume n is large enough so Ln (wi ) = Li is approximately independent of n
with Loh Li (this can be made precise using kn→ K ) so that (up to a constant )

F (Vi ) = nPo Li t Xi login ( 7- t )

Then by graphing the free energy as a function of n we can see the possibility of
a first-order phase transition (at nz in the diagram) :

F ''
npolit X , log n

"Po ↳ tho login

(7 .

. 2)
(

'!
7 n

1
m na B Pf(w/ Dns)

W Wt -

*it
pflwl Dm)

For small n
,
the phase (

"

candidate solution
" ) which is lower entropy may be preferred

by the posterior even if it has higher error, but as n → N the constraint on error

comes to dominate (
" at '

'
n =D the posterior concentrates at the point of lowest entropy on Wo) .

Remark As far as I know the only discussion of first -orderphase transitions in SLT

is in [W 37
.

The above is largely based on that discussion .
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Remark Recall from DLTZC p -④ that we should thinkof the Bayes

generalisation error as In
F
,
the extensive thermodynamic

coordinate conjugate to the
"
inverse temperature

"
n . As in Cz -

t )

we can add a V- dependence to the generalisation error, and

from (7. 1) we find that the generalisation error associated to

a phase is (at least formally )

Bg ( n , p, V ) = In F ( Vi ) = Po Li t 18.1 )

The case where Li =O is covered by [W], we leave a rigorous discussion

of thegeneral case to elsewhere .

Note that the preferredphase is selected

to minimise ( 7. 1) not (8. t )
,
so the

"

fall
" El Bg ] will display a

characteristic trace of the first- order phase transitions as shown below

F t
npolit X , log n

:i
"Po ↳ tlologn

i
(8.2)

l
l

l
c

f '

' 7 n
1

ng n , Nz h3

EL Bg) ^
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- observed # [Bg]
i

- l

l
l

por,i## pole, t Hn
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i
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Note the discontinuity in the observed generalisation error at the phase transition
which is typical for extensive observables (Callen, p . 220 ] and corresponds to

the discontinuity in the slope of Fagainst n at the phase transition .

Problem 1 Demonstrate the existence of first-order phase transitions in small

neural networks
.
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3
. Second-orderphase transitions

The learning machine of D④ 53 is determined by its Boltzmann distribution

which varies with the parameters 0=101,02) = ( n ,B ) .

In the previous

section we examined such variations via their effect on F = FCV) as a proxy

for a direct examination oftheposterior. We now study the posterior directly .

Observe that given an infinitesimal variation DO, and writing PCO) =p (Wl Dn , O)

Plot so ) = Plo) t E. so iffy .

Plots
= I t E ?pYo%oi

PLO)

int "opioid ) - sista, - is
.

.

.
.

s:÷oi¥a¥o. .
Hence

KL ( Plotso) H PCO) ) = Idw ( PCO) t Sk s ok3¥] -

kis÷¥oi÷÷s÷÷i¥o,
= E. so i Idw IoT. - I §. soisoifdwpfofof.fi

+ §
,

so's ok Idw plot fate. For toCso)

But fdw 3¥. = IoT. fdwp = Foil 1) = 0 so

(IO - t )

KL ( PlOtsO ) H PIO) ) = I so is oifdw 21091404 210g Plot

20 i zoj Plo)
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This means that if we want to understand how variations in O affect the posterior ,
we must begin with the Fisher information matrix, which is a symmetric 2 -form

on the space H of parameters 0

Fj lol = Idw Pco ) "°gPo NYo" in . . ,

we note that a priori this integral may not exist for all values of O, and even if the

matrix F(O) = ( Fij CO) ) i ,j exists it may not be positive definite .
It is the

former phenomenon that is of interest in connection with second -order phase

transitions
,
because if Fij (O) → N as O→ Ocr then small variations

in n ,B near her, Ber have divergent effects on the posterior (and thus on

any quantity produced by integration over the posterior) .

I learned this

information - theoretic point of view from [ DFLI , [PLOW ].

Remark It is important to distinguish the Fisher matrix on H above from the

Fishermatrix on W
,
considered for example in CW]

.

plylx, w) q (x) ply Ix, w
'
) g Cx)

t xxy I
. xxy

l l

- i
l l

l l

i i
i W
'

•

w/

w ( Il . 2)
✓

pcwl Dn, O)
l
l

l

l

"

! H F conformal symmetry
•

'

0¥
per flow
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Remark Fij (O) is actually a random matrix due to the stochastic ity in Dn .

Now recall that (ofwune this makes no sense currently for Oi - n )

Iif = - Fi log Z = Iz Foi fdwexpfnplnlw ) ) Ylw)

( 12 - I )

=

-tzfdwffif -nplnlwt ] expfnplnlw ) ) 71W)

= EEL { nplnlw ) ) ]

Hence
, if we write Xi = IoT ( nplnlw) ) ,

IoT. log PCO ) = IoT. log [ ztexpfnplnlw) ) Ylw) )

= ftp.C-nplnlw ) ) - Foi log 2 ( 12.2 )

= - f Xi - EEE Xi ] }

Hence

Fij (O ) = Jdw ( X " - E1[ Xi] ) ( XJ - EE ( XJ ] ) PCO) uz.rs)

is the covariance matrix ofthe random variables Xl, XZ ( hence in particular

positive semi-definite ) .

The meaning of XZ is straightforward [WAK, (9) ]

X
-
= mln (w ) "

error

"

( 12.4)

EI [ X' ] = nlnlwo ) that "

Gibbs training error
"
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The Fn derivative is more subtle , and we are tempted to set

X
'
= (ntl ) polenta ( w ) - nfLn (w) ( 13.1 )

except that as it stands this does notmake sense .
However it seems we should associate

E ? ( X '] to the Bayes training error, so provisionally we think of X1 as a local

density for the Bayes training error.

By Appendix A we have

Fij (O ) = %q.

t EE ( zoojlnplnlw) ) ] ( B.⇒

and hence

I , lo ) = 3¥ t EE [ Ex
']

Fido ) = Fake) = a?p t Eff Fn (n Ln ) ] us . 3)

722 ( O) =
2
2ps

Hence using (12.1 ), ( 12 . 4)

Izz (O ) = Fp EBW ( X ' ) = n FpGt (nip) 43.4)

Returning now to the topic of second-order phase transitions, ifsome component
of F diverges as O approaches some limiting value, then there are

"effectively

infinitely many
"

statistically distinct posteriordistributions along a finite path in H

(see [DFL
,

5It ) ) .

In the next section we sketch, using the renormalisationgroup,

what the existence ofsuch a phase transition suggests for the Gibbs training error.
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4- Power laws and the renormalisation group

This section is speculative, and its aim is to present a possible path towards deriving

power laws analogous to those inD④ within SLT
. There is some overlap with

[WLD but this remains to be understood .

For an introduction to renormalisation see [FI
.

The metric tensor F on
H is a highly nontrivial object, but itpossesses some

natural symmetries from which we can aim to extract scaling laws .

The symmetries
in question arise from the fact that there is no canonical scale for n ,p and thus these

parameters may be
"rescaled

" without
"essentially changing

"

the statistics (up to a scale) .
T
associated

More precisely let H* be the open subset of H where 040 and F is to d below

positive -definite, so H* is a Riemannian manifold, with coordinates

T = Yn
,
T= Yp, O = (TT)

.
114.11

The Fisher information is the following 2-form on
H*

F (n , p ) dndp = F ( T, T ) FT dT3¥dT

= ¥2 FIT, T) DJ4T

We write F
*
= ¥12F

so that in particular FIT
= FpGets, T) .

Suppose that Ht admits a conformal symmetry associated to the aforementioned

rescaling
,
with infinitesimalgenerator

J→ T t Ek
' (O ) t O (E) 44.2)

T→ T t C- KYO) t OCE)
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where K
'
= AJ

,
K2 = BT

, for constants A, B .
Here we follow CDFLT

.

If we assume that there is an " intrinsic dimension
"

d as in [DFL, (5-2) ]

and that there is a fixed pointof the Ra flow at ( o, 1) then this implies a
* * *

system of differential equations for Fu, Tiz, Its on tl*. In particular

Fta K2
, z
t FLIK ? z t FT, r k

'

t d Ftz = O ( is. i )

where commas in subscripts denote derivatives as in [DFL, (5-2)] . This yields

2B Ftz t AT# ( FIA) t BT# (FIS ) = - d FIZ

AT # (FIA) t BT#(FIA ) = C-d-2B) F'Is

which suggests FIZ is quasi- homogeneous : supposing
FIZ = T

"

T
"

we

obtain u AT
"
T
"

t v B J
"

T
"
= (- d- 2B) T

"

T
"

hence

uA t v B = - d- 2B (15-2)

From this we obtain for (T, T ) - (0,1)

J
-3
T
- 2 Fp Gt - T "T "

Z

Tp Gt n j
ut 3-1×1-2

V

Gt n p
J
" t 'T t const (p constant)

and hence as n → N

s

Gt ( n , 1) ~ Ft t const .

45-3)
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Under many optimistic hypotheses and ignoring several mathematical issues this

gives a
"derivation " of power law behaviour for the Gibbs training error as a

function of the dataset size n . The relation of the Gibbs generalisation error
to deep learning practice (modulo the relation of SAD to the posterior) was

pointed out in SLTGO p .⑦ .

Turning this around, he could read the existence ofpower law behaviour in

Transformermodels as evidence for second-order phase transitions in the

associated learning machines .

Remarks Here are some thoughts on turning this into real mathematics :

lil one thing that is initially confusing is that in a second -orderphase transition

usually some generalised susceptibility diverges atthe critical temperature .

Since J
- 3
T
- Z Fpht appears in F

*

as long as this quantity diverges

more slowly than J
- 3 ( t - e - U

,
which is negative, satisfies lute 3) as T→ 0

we have convergence of the Gibbs training error. It is of course notclear

how to actually prove /ul <3 .

til the sketch of renormalisation group methods above assumes thatthe RA

transformation is especially simple ( i - e - that the flows
"stay inH

" )
.

This

is unlikely .

Itseems that a proper treatment must reconcile Ra flows

in the information geometry setting with resolutions of singularities .

Ciii) A fundamental approach to treating n as continuous must be found,
as at the moment this prevents much of this lecture from being formalised .
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Civ) In the realisable case by [w, theorem 6. to ] we have n at→ at and

E[at ] = Fs - v(B ) so we expect

at (n , I ) - In - V Cl ) 47.1 )

which fits (15.3 ) with u = -2 .

In [WLD Watanabe shows that "conditions of

learnability of indexT
"

imply that [wk, 49) ]

Gt (n ,
I ) - Fr t const . ( 17. 2)

for some constantp .
The topic of renormalisation isdiscussed from a different

point of view in [W4, 56.2] .

G) Note that we also expect power laws for the other components of F, see (13.3 ) .

(vi ) It is probably unrealistic to expect to prove the existenceof second-order

phase transitions in a nontrivial deep neural network, and to rigorously derive

the scaling exponents . But it does seem tractable to construct a mathematical

framework in which the Ra flow is well-defined, and prove thatif a

phase transition exists then certain relations hold among the exponents etc .

The
yoga of universality classes, relevant operators etc. , would also be

valuable in clarifying the overall structure of a mathematical theory
of deep learning .

Hii ) the treatment of the stochastic ily in Dn above is inconsistent, and this

is another area where some nontrivial effortseems to be necessary .



DLT3①
⑧

5
. Conclusion

This brings us to the end of the invitation to the theory of deep learning , consisting of
DLTIO, DLTZO and this document . As outlined in D④ the discovery ofpower laws

portends the emergence of deep learning as a general purpose technology .

The

mathematical theory behind this technology is both beautiful and likely to

have profound impacts in the real world as the scale of deep learning systems
increases (think factories or chemicalplanb) .

Some parts of this theory are already clear, while others remain to be uncovered

and are presently only visible in outline .

In D④ we gave an introduction
to

Watanabe 's singular learning theory as a thermodynamic's of deep learning ,
and in this lecture we discussed first -orderphase transitions and, more

speculatively , second- order phase transitions which may (with work) give

a theoretical basis to the aforementioned empirically observed power laws.

It is truly remarkable that resolution of singularities, one of the deepest results

in algebraic geometry , togetherwith the theory of critical phenomena and the

renormalisation group , some of
the deepest ideas in physics, are both

implicated in the emerging mathematical theory of deep learning .

This is

perhaps a hint of the fundamental structure of intelligence, both

artificial and natural . There is much to be done !
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Let f- = flu, O) and Z = fdw e-
t

.

Then (writing ECh) = If dw he
- f
)

Foi 2 = - fdw Itai e
- f

o÷zoi2 = - fdwff.to .. e- f t fdw Itai Ige - f

zq÷a log 2 = Fg . ( E Foi ) = If 3¥a. z - II. Foi)

=

- If dwfffsoie-fttzfdwftz.IT, - e
- f
-III. Eg .

=
- Elata.] t Etta Eo;] - E III. I ELIOTT

E (Fa. - Etta.) ) ( Fg .

-ELIF . ] ))
= ELIF. Fg. ] - ELFa.IE LEG . ]

= ag÷a. logZ t Effigy. ]
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