Bicategories

Rohan Hitchcock

28 January 2022

In this note we define and motivate the notion of a bicategory, closely following [Bor94, Chapter 7].

1 2-categories

First observe that in any category \mathcal{C} and A an object of \mathcal{C} , the identity morphism $\mathrm{id}_A : A \to A$ can be viewed as a morphism of sets $u_A : \{*\} \to \mathcal{C}(A, A)$ which identifies id_A (i.e. $u_A(*) = \mathrm{id}_A$). With this interpretation the identity axioms of the category ($\mathrm{id}_A f = f$ for all $f : B \to A$; $g \circ \mathrm{id}_A = g$ for all $g : A \to B$) can be expressed as the assertion that the following diagrams in the category of sets

commute for all pairs of objects A and B in C, where $c_{XYZ} : C(X, Y) \times C(Y, Z) \to C(X, Z)$ is composition. The associativity axiom can also be expressed as the assertion that the diagram of sets

$$\begin{array}{cccc}
\mathcal{C}(A,B) \times \mathcal{C}(B,C) \times \mathcal{C}(C,D) & \xrightarrow{\mathrm{id} \times c_{BCD}} \mathcal{C}(A,B) \times \mathcal{C}(B,D) \\
& & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & \mathcal{C}(A,C) \times \mathcal{C}(C,D) & \xrightarrow{c_{ACD}} \mathcal{C}(A,D)
\end{array} (2)$$

commutes for all objects A, B, C and D of C.

Informally, a 2-category is a category in which we also have higher order morphisms between morphisms of objects, and everything "works". To be more precise:

Definition 1.1. A 2-category C is a category in which C(A, B) is a category for all objects A and B, and:

- (1) Composition $\mathcal{C}(A, B) \times \mathcal{C}(B, C) \to \mathcal{C}(A, C)$ is a functor.
- (2) The map $u_A : \{*\} \to \mathcal{C}(A, A)$ which identifies the identity id_A is a functor, where $\{*\}$ is regarded as the category with one object and one morphism.
- (3) The diagrams at (1) and (2) above commute as diagrams of categories.

The objects of $\mathcal{C}(A, B)$ are called *1-morphisms* and the morphisms of $\mathcal{C}(A, B)$ are called *2-morphisms*.

Following [Bor94], we denote objects in a 2-category by capital letters A, B, C...,1-morphisms by lower-case letters a, b, c..., and 2-morphisms by Greek letters $\alpha, \beta, \gamma...$ A 1-morphism can be denoted with an arrow $A \to B$ as usual, and a 2-morphism can be denoted with an arrow $a \Rightarrow b$.

In a 2-category \mathcal{C} there are two notions of composition of 2-morphisms: applying the composition functor $c_{ABC} : \mathcal{C}(A, B) \times \mathcal{C}(B, C) \to \mathcal{C}(A, C)$ to a pair of 2-morphisms, and composing 2-morphisms within $\mathcal{C}(A, B)$. For the first case, consider the following situation:

$$A \xrightarrow[g]{f} B \xrightarrow[m]{\ell} C$$

In the category $\mathcal{C}(A, B) \times \mathcal{C}(B, C)$ we have objects (f, ℓ) and (g, m) and a morphism $(\alpha, \beta) : (f, \ell) \Rightarrow (g, m)$. Via the composition functor c_{ABC} we obtain a 2-morphism $c_{ABC} : \ell \circ f \Rightarrow m \circ g$. Such composition is sometimes called *horizontal composition* or composition along objects and is denoted $\beta * \alpha \coloneqq c_{ABC}(\alpha, \beta)$. This is in contrast to vertical composition or composition along morphisms, where in the situation of

$$A \xrightarrow[h]{g \ \psi } B$$

we obtain a morphism $\varphi \odot \psi : f \Rightarrow h$. Functoriality of composition means that in the situation of

$$A \xrightarrow[h]{g \ \psi \psi} B \xrightarrow[n]{\ell} B \xrightarrow[h]{w \ \phi} C$$

we have

$$(\beta * \varphi) \odot (\alpha * \psi) = c_{ABC}(\varphi, \beta) \odot c_{ABC}(\psi, \alpha)$$
$$= c_{ABC}((\varphi, \beta) \odot (\psi, \alpha))$$
$$= c_{ABC}((\varphi \odot \psi, \beta \odot \alpha))$$
$$= (\beta \odot \alpha) * (\varphi \odot \psi)$$

The prototypical example of a 2-category one in which the objects are categories, the 1-morphisms are functors and the 2-morphisms are natural transformations. Many familiar concepts in this setting transfer naturally to a general 2-category. For example:

Definition 1.2. A pair of 1-morphisms $f : A \leftrightarrows B : g$ in a 2-category are *adjoint* if there exist 2-morphisms $\eta : id_B \Rightarrow f \circ g$ and $\epsilon : g \circ f \Rightarrow id_A$ such that the diagrams

commute in $\mathcal{C}(B, A)$ and $\mathcal{C}(A, B)$ respectively. Here i_f and i_g denote the identity 2-morphism on f and g respectively.

2 Bicategories

Consider any diagram of 1-morphisms in a 2-category \mathcal{C} , for example a square:

$$\begin{array}{ccc} A & & \stackrel{f}{\longrightarrow} & B \\ \downarrow & & & \downarrow g \\ C & & \stackrel{f}{\longrightarrow} & D \end{array} \tag{\Box}$$

To say that (\Box) commutes is to say that $g \circ f = j \circ i$, or equivalently that we have the identity 2-morphism id : $g \circ f \Rightarrow j \circ i$. This may be indicated on (\Box) by filling in its face like so:

Of course, in a 2-category we may have 2-morphisms which are not the identity. It is therefore natural to consider diagrams which do not commute, but in which the faces are filled in with 2-morphisms. Of particular interest in defining bicategories are diagrams in which the faces are filled with 2-isomorphisms.

Suppose we have a collection of objects together with some candidate 1-morphisms and 2-morphisms. We would like to define a 2-category using this data, but the diagrams at (1) and (2) above do not commute. If these diagrams can instead can be filled in with natural isomorphisms (2-morphisms in a category of categories) then this data describes a bicategory.

Definition 2.1. A *bicategory* \mathcal{B} consists of the following data:

- (1) A collection of objects.
- (2) For every pair of objects A, B a category $\mathcal{B}(A, B)$ of 1-morphisms.
- (3) For each object A a functor $u_A : \{*\} \to \mathcal{B}(A, A)$, where $\mathrm{id}_A \coloneqq u_A(*)$.
- (4) For all objects A, B, C a composition functor $c_{ABC} : \mathcal{B}(A, B) \times \mathcal{B}(B, C) \to \mathcal{B}(A, C)$.
- (5) For all objects A, B, C, D we have a natural isomorphism α_{ABCD} called the *asso-ciator* satisfying:

$$\begin{array}{c|c} \mathcal{C}(A,B) \times \mathcal{C}(B,C) \times \mathcal{C}(C,D) & \xrightarrow{\operatorname{id} \times c_{BCD}} & \mathcal{C}(A,B) \times \mathcal{C}(B,D) \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & &$$

(6) For all objects A, B we have natural isomorphism λ_{AB} and ρ_{AB} called the *left* and *right unitors* respectively, which satisfy:

This data is subject to two conditions, called the *coherence conditions*, which are:

• Given 1-morphisms

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{j} E$$

the following diagram in $\mathcal{B}(A, E)$ commutes

$$\begin{array}{cccc} ((j \circ h) \circ g) \circ f & \xrightarrow{\alpha_{g,h,j} \ast i_{f}} & (j \circ (h \circ g)) \circ f & \xrightarrow{\alpha_{f,g \circ h,j}} & j \circ ((h \circ g) \circ f) \\ & & & \downarrow \\ & & & \downarrow \\ (j \circ h) \circ (g \circ f) & \xrightarrow{\alpha_{g \circ f,h,j}} & & j \circ (h \circ (g \circ f)) \end{array}$$

where we have written $\alpha_{f,g,h}$ for $\alpha_{ABCD}(f,g,h)$ and so on.

• Given 1-morphisms $A \xrightarrow{f} B \xrightarrow{g} C$ the following diagram in $\mathcal{B}(A, C)$ commutes

where $i_B = u_B(* \to *)$ and again we write $\alpha_{f,1_B,h}$ for $\alpha_{ABBC}(f,1_B,g)$ and so on.

Note that in general a bicategory is not a category. Thanks to the coherence conditions the definition of a bicategory appears very clunky in comparison to a 2-category. However, since many mathematical objects are defined only up to isomorphism, the bicategory is a more 'natural' concept.

Example. We can define a bicategory in which the objects are rings, and for rings R and S the category of 1-morphisms is the category of R-S-bimodules. Composition is given by taking the tensor product of bimodules. If we wanted to define a 2-category along these lines we would need to somehow arrange for the tensor products $(A \otimes_R B) \otimes_S C$ and $A \otimes_R (B \otimes_S C)$ to be equal — rather than naturally isomorphic — for associativity of composition to hold.

References

[Bor94] Francis Borceux. Handbook of categorical algebra 1: basic category theory. Encyclopedia of mathematics and its applications v. 50. Cambridge [England]; New York: Cambridge University Press, 1994. 345 pp. ISBN: 0-521-44178-1.