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In this note we give a brief introduction to idempotent morphisms and idempotent
completion of categories, focusing on categories which are preadditive. Idempotent morph-
isms and idempotent completion is also covered in [Bor94, Section 6.5] (where “idempotent
completion” is called “Cauchy completion”) but no special attention is paid to preadditive
categories.

1 Definitions and basic results

Let C be a category, which for now we do not assume is preadditive.
Definition 1.1. An endomorphism e : C'— C in C is an idempotent if e? = e.

Consider a pair of morphisms s : R = C' : r such that rs = idg. Then e = sr is an
idempotent.

Definition 1.2. We call an idempotent e : C' — C' split if there exist morphisms s : R <
C and r : C' — R such that rs = idg. We call the category C idempotent complete if all
idempotents split.

Lemma 1.3 (Proposition 6.5.4 [Bor94]). Let e : C'— C' be an idempotent. The following
are equivalent:

(1) e = sr is split, where s : R — C andr: C — R.
(2) The equaliser eq(e, 1¢) exists and is equal to (R, s).
(3) The coequaliser coeq(lc, e) exists and is equal to (R, ).

Proof. Suppose e is split, so we have morphisms s : R < C and r : C — R such that
rs = idg. We now prove that eq(e, 1¢) = (R, s) by showing the universal property is
satisfied. We have es = s, and given another morphism d : D — C where ed = d, we have
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where all three triangles commute. Indeed, setting n = rd we have sn = srd = ed = d.
Moreover if n’ : D — R is another morphism which satisfies sn’ = d we have sn = sn’
and so rsn = rsn’ =n = n’. This shows eq(e, 1¢) = (R, s) and so (1) = (2). This also
shows (1) = (3), since this is statement is equivalent to (1) = (2) holding in C°P.



Supposing (2), there exists r : C' — eq(e, 1¢) such that
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commutes. By applying the universal property to the morphism s : eq(e, 1¢) — C and
appealing to uniqueness we have rs = 1, which proves (2) = (1). By making use of
C°P this also shows (3) = (1). O

Lemma 1.4. If C is a preadditive category then the following are equivalent:
(1) C idempotent complete,
(2) All idempotents have a kernel,
(8) All idempotents have a cokernel.

Proof. The equivalence (1) <= (2) can be proved using Lemma 1.3 by observing that
if e : C — C is an idempotent then so is 1¢ — e, and that eq(l¢ — e, 1¢) = ker(e). The
equivalence (1) <= (3) can be proved in the same way in the opposite category. ]

As a corollary note that any abelian category is idempotent complete. For an additive
category, the property of “being idempotent complete” can be viewed as a weakening of
“being abelian”.

Lemma 1.5. Suppose C is preadditive. Let e : C — C be an idempotent such that the
idempotents e and 1 — e both split: e = sr and 1 — e = s'r" where s: R — C, r: C — R,
s:R—-Candr :C—R. ThenC=ZR&R.

Proof. Since rs = 1 and r's’ = 1 we have that s and s’ are monomorphisms, and r
and 7’ are epimorphisms. Also note that rs’ = 0 since r¢'r" = r(1 —e) = 0 and 7’ is an
epimorphism. Likewise r's = 0.

Suppose we have morphisms f; : D — R and f; = D — R’. Then we have
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where f = sf;+5'fs. Clearly both triangles in this diagram commute. Suppose g : D — C
also makes both triangles in the diagram above commute. Then g — r'sf; = fo = r's' f5
and, since r’ is an epimorphism this gives ¢ = f, so f is unique and hence C = R x R'.
A similar argument shows that C' is also the coproduct of R and R’, which proves the
lemma. O]



2 Idempotent completion

Definition 2.1. The idempotent completion of C is an idempotent complete category C¥
together with a full and faithful functor C — C* such that, given a functor F' : C — D
where D is idempotent complete, there exists functor F“ : C* — D such that
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commutes, and moreover F'“ is unique up to isomorphism of functors.

Using the standard argument for objects defined via universal properties one can show
that if C* exists it is unique up to equivalence of categories. If C¥ exists we can without
loss of generality consider C to be a full subcategory of C¥. In [Bor94, Proposition 6.5.9]
it is proved that C“ exists when C is small.

Our goal now is to prove that when C is a subcategory of an preadditive, idempotent
complete category A, that C* exists and is the full subcategory of A of direct summands
of objects of C. Let A and B be objects of the same category. We say B is a retract of A
if there exist morphisms
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such that rs = 1p.

Lemma 2.2. Let C — D be a fully faithful functor. Suppose D is idempotent complete and
that every object of D is a retract of an object of C. Then D is the idempotent completion
of C.

Proof. Without loss of generality suppose C is a full subcategory of D. Let F': C — £ be a
functor to an idempotent complete category £. We aim to construct a functor F' : D — &
which fills in the diagram in Definition 2.1.

Let D be an object of D and C' an object of C such that D is a retract of C', so we
have
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where rs = 1p. In order to ensure Fis equal to F' when restricted to objects of C, if D
happens to be an object of C then choose C' = D and s = r = 1p. Consider the morphism
e = sr : C — C, which is an idempotent in C. Since £ is idempotent complete F'(e)
splits and, using Lemma 1.3, we can define f(D) =eq(F(e),1pcy). In the case that D
is an object of C choose the equaliser to be (F/(C'),1). We denote the associated equaliser
morphism in € by o : F(D) — F(C). Also note that by the same argument as in Lemma
1.3 we have a morphism p : F(C) — F(D) in € such that F(e) = op and po = 1.

Let f: Dy — Dy be a morphism in D. For ¢ = 1,2 let C; be an object of C such that
D; is a retract of C;. Let s; : D; — C; and r; : C; — D; be the morphisms in D in this
retract and e; = r;s;. Let p; 1 F(C;) — F(D;) and o; : F(D;) — F(C;) be the morphisms
in £ which split F(e;). Note that the composition sy fr; : C; — Cy is a morphism in C



and so in £ we have the diagram

where f exists by the universal property of the equaliser. We define F (f) = for.

To see that this defines a functor, first consider the case when D; = Dy and f = 1p,.
Then f on the diagram above is a morphism such that s; f = e, SO by uniqueness f = p1.
Therefore F(1¢,) = pioy = 1 F(py) 88 required.

Consider another morphism g : Dy — D3 in D. We have the following diagram in &:

F(Dy) ———— F(C) %; F(Cy)

e F(s3fra)

F(es)

F(Dg) —— F(C3) :; F(Cs)

Let h : F(C)) — F(Dg) be the unique morphism in & satisfying o3h = F(s3gfry), so by
definition we have F(gf) = ho. Note that

o3(goaf) = F(ssgra) F(safri) = F(s3gfri)

and so h = gosf by uniqueness. Therefore F (9f) = ~(g)ﬁ (f) as required and hence we
have shown that F defines a functor and by construction F e =F.

For uniqueness, suppose we have two functors Fy, Fy : D — & such that F1|c = F2|c =
F. Let D be an object in D and

D—=-C—"5D

be a retract with C' an object of C. Then for i = 1,2 we have the retract
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in €. Noting that F;(s)F;(r) = F(e), we have (Fj(D), Fi(s)) is the equaliser eq(F(e), Lrey)
by Lemma 1.3. Therefore the functors are naturally isomorphic. O

Corollary 2.3. Let C be a subcategory of an preadditive, idempotent complete category
A. Then C¥ is the full subcategory of A consisting of objects which are direct summands
of objects of C.

Proof. Let D be this subcategory. Clearly C is a subcategory of D, and every object of
D is a retract of some object of C.

We now show that D is idempotent complete. If e : " — C' is an idempotent in D
then it splits in A as e = sr where s : R — C'and r : C' — R. By Lemma 1.5 R is a direct
summand of C'. Since C'is a direct summand of an object of C we have that R is a direct
summand of the same object and hence R is in D. Therefore the morphisms s : R — C'
and r : ' — R are in D and e splits in D. O



Corollary 2.4. The idempotent completion of the category of free modules over a com-
mutative ring R is the category of projective modules over R.

Proof. 1t is well-known that a module is projective if and only if it is a direct summand
of a free module. O

3 Results used to define LG

Let R be a commutative ring, f € R. We quote the following result without proof.

Theorem 3.1 (Proposition 1.6.8 [Neeld]). Any triangulated category which admits all
countable coproducts is idempotent complete.

Corollary 3.2. HMF(R, f) is idempotent complete.

Proof. HMF(R, f) admits all countable coproducts and the shift functor X — X[1] in-
duces a triangulated structure on HMF (R, f). O

Corollary 3.3. hmf(R, f)¥ is the full subcategory of direct summands of objects of hmf(R, f).
Proof. See Corollary 2.3. m

Lemma 3.4. Let C be a preadditive category with a zero object and C¥ its idempotent
completion. A functor C x C — C¥ extends uniquely to a functor C¥ x C¥ — C¥.

Proof. We can embed C into C* via the functor C' — (C,0) or via the functor C' — (0,C).
Using this we can show (C x C)“ is C¥ x C¥ directly from the definition. O
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