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In this note we give a brief introduction to idempotent morphisms and idempotent
completion of categories, focusing on categories which are preadditive. Idempotent morph-
isms and idempotent completion is also covered in [Bor94, Section 6.5] (where “idempotent
completion” is called “Cauchy completion”) but no special attention is paid to preadditive
categories.

1 Definitions and basic results

Let C be a category, which for now we do not assume is preadditive.

Definition 1.1. An endomorphism e : C → C in C is an idempotent if e2 = e.

Consider a pair of morphisms s : R � C : r such that rs = idR. Then e = sr is an
idempotent.

Definition 1.2. We call an idempotent e : C → C split if there exist morphisms s : R �
C and r : C → R such that rs = idR. We call the category C idempotent complete if all
idempotents split.

Lemma 1.3 (Proposition 6.5.4 [Bor94]). Let e : C → C be an idempotent. The following
are equivalent:

(1) e = sr is split, where s : R→ C and r : C → R.

(2) The equaliser eq(e, 1C) exists and is equal to (R, s).

(3) The coequaliser coeq(1C , e) exists and is equal to (R, r).

Proof. Suppose e is split, so we have morphisms s : R � C and r : C → R such that
rs = idR. We now prove that eq(e, 1C) = (R, s) by showing the universal property is
satisfied. We have es = s, and given another morphism d : D → C where ed = d, we have

R C C

D

s e

1C

d
rd d

where all three triangles commute. Indeed, setting n = rd we have sn = srd = ed = d.
Moreover if n′ : D → R is another morphism which satisfies sn′ = d we have sn = sn′

and so rsn = rsn′ = n = n′. This shows eq(e, 1C) = (R, s) and so (1) =⇒ (2). This also
shows (1) =⇒ (3), since this is statement is equivalent to (1) =⇒ (2) holding in Cop.
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Supposing (2), there exists r : C → eq(e, 1C) such that

eq(e, 1C) C C

C

s e

1C

e
∃!r e

commutes. By applying the universal property to the morphism s : eq(e, 1C) → C and
appealing to uniqueness we have rs = 1, which proves (2) =⇒ (1). By making use of
Cop this also shows (3) =⇒ (1).

Lemma 1.4. If C is a preadditive category then the following are equivalent:

(1) C idempotent complete,

(2) All idempotents have a kernel,

(3) All idempotents have a cokernel.

Proof. The equivalence (1) ⇐⇒ (2) can be proved using Lemma 1.3 by observing that
if e : C → C is an idempotent then so is 1C − e, and that eq(1C − e, 1C) = ker(e). The
equivalence (1) ⇐⇒ (3) can be proved in the same way in the opposite category.

As a corollary note that any abelian category is idempotent complete. For an additive
category, the property of “being idempotent complete” can be viewed as a weakening of
“being abelian”.

Lemma 1.5. Suppose C is preadditive. Let e : C → C be an idempotent such that the
idempotents e and 1− e both split: e = sr and 1− e = s′r′ where s : R→ C, r : C → R,
s′ : R′ → C and r′ : C → R′. Then C ∼= R⊕R′.

Proof. Since rs = 1R and r′s′ = 1R′ we have that s and s′ are monomorphisms, and r
and r′ are epimorphisms. Also note that rs′ = 0 since rs′r′ = r(1 − e) = 0 and r′ is an
epimorphism. Likewise r′s = 0.

Suppose we have morphisms f1 : D → R and f2 = D → R′. Then we have

D

R C R′

f1 f2
f

r r′

where f = sf1+s′f2. Clearly both triangles in this diagram commute. Suppose g : D → C
also makes both triangles in the diagram above commute. Then r′g − r′sf1 = f2 = r′s′f2
and, since r′ is an epimorphism this gives g = f , so f is unique and hence C = R × R′.
A similar argument shows that C is also the coproduct of R and R′, which proves the
lemma.

2



2 Idempotent completion

Definition 2.1. The idempotent completion of C is an idempotent complete category Cω
together with a full and faithful functor C → Cω such that, given a functor F : C → D
where D is idempotent complete, there exists functor F ω : Cω → D such that

C Cω

D
F

Fω

commutes, and moreover F ω is unique up to isomorphism of functors.

Using the standard argument for objects defined via universal properties one can show
that if Cω exists it is unique up to equivalence of categories. If Cω exists we can without
loss of generality consider C to be a full subcategory of Cω. In [Bor94, Proposition 6.5.9]
it is proved that Cω exists when C is small.

Our goal now is to prove that when C is a subcategory of an preadditive, idempotent
complete category A, that Cω exists and is the full subcategory of A of direct summands
of objects of C. Let A and B be objects of the same category. We say B is a retract of A
if there exist morphisms

B A Bs r

such that rs = 1B.

Lemma 2.2. Let C → D be a fully faithful functor. Suppose D is idempotent complete and
that every object of D is a retract of an object of C. Then D is the idempotent completion
of C.

Proof. Without loss of generality suppose C is a full subcategory of D. Let F : C → E be a
functor to an idempotent complete category E . We aim to construct a functor F̃ : D → E
which fills in the diagram in Definition 2.1.

Let D be an object of D and C an object of C such that D is a retract of C, so we
have

D C Ds r

where rs = 1D. In order to ensure F̃ is equal to F when restricted to objects of C, if D
happens to be an object of C then choose C = D and s = r = 1D. Consider the morphism
e = sr : C → C, which is an idempotent in C. Since E is idempotent complete F (e)

splits and, using Lemma 1.3, we can define F̃ (D) = eq(F (e), 1F (C)). In the case that D
is an object of C choose the equaliser to be (F (C), 1). We denote the associated equaliser

morphism in E by σ : F̃ (D)→ F (C). Also note that by the same argument as in Lemma

1.3 we have a morphism ρ : F (C)→ F̃ (D) in E such that F (e) = σρ and ρσ = 1.
Let f : D1 → D2 be a morphism in D. For i = 1, 2 let Ci be an object of C such that

Di is a retract of Ci. Let si : Di → Ci and ri : Ci → Di be the morphisms in D in this
retract and ei = risi. Let ρi : F (Ci)→ F̃ (Di) and σi : F̃ (Di)→ F (Ci) be the morphisms
in E which split F (ei). Note that the composition s2fr1 : C1 → C2 is a morphism in C
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and so in E we have the diagram

F̃ (D1) F (C1) F (C1)

F̃ (D2) F (C2) F (C2)

σ1
F (e1)

1

F (s2fr1)
∃!f̃

σ2

F (e2)

1

where f̃ exists by the universal property of the equaliser. We define F̃ (f) = f̃σ1.
To see that this defines a functor, first consider the case when D1 = D2 and f = 1D1 .

Then f̃ on the diagram above is a morphism such that s1f̃ = e1, so by uniqueness f̃ = ρ1.
Therefore F̃ (1C1) = ρ1σ1 = 1F̃ (D1)

as required.
Consider another morphism g : D2 → D3 in D. We have the following diagram in E :

F̃ (D2) F (C2) F (C2)

F̃ (D3) F (C3) F (C3)

σ2

F (e2)

1

F (s3fr2)
∃!g̃

σ3

F (e3)

1

Let h̃ : F (C1) → F̃ (D3) be the unique morphism in E satisfying σ3h̃ = F (s3gfr1), so by

definition we have F̃ (gf) = h̃σ1. Note that

σ3(g̃σ2f̃) = F (s3gr2)F (s2fr1) = F (s3gfr1)

and so h̃ = g̃σ3f̃ by uniqueness. Therefore F̃ (gf) = F̃ (g)F̃ (f) as required and hence we

have shown that F̃ defines a functor and by construction F̃ |C = F .

For uniqueness, suppose we have two functors F̃1, F̃2 : D → E such that F̃1|C = F̃2|C =
F . Let D be an object in D and

D C Ds r

be a retract with C an object of C. Then for i = 1, 2 we have the retract

F̃i(D) F (C) F̃i(D)
F̃i(s) F̃i(r)

in E . Noting that F̃i(s)F̃i(r) = F (e), we have (F̃i(D), F̃i(s)) is the equaliser eq(F (e), 1F (C))
by Lemma 1.3. Therefore the functors are naturally isomorphic.

Corollary 2.3. Let C be a subcategory of an preadditive, idempotent complete category
A. Then Cω is the full subcategory of A consisting of objects which are direct summands
of objects of C.

Proof. Let D be this subcategory. Clearly C is a subcategory of D, and every object of
D is a retract of some object of C.

We now show that D is idempotent complete. If e : C → C is an idempotent in D
then it splits in A as e = sr where s : R→ C and r : C → R. By Lemma 1.5 R is a direct
summand of C. Since C is a direct summand of an object of C we have that R is a direct
summand of the same object and hence R is in D. Therefore the morphisms s : R → C
and r : C → R are in D and e splits in D.
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Corollary 2.4. The idempotent completion of the category of free modules over a com-
mutative ring R is the category of projective modules over R.

Proof. It is well-known that a module is projective if and only if it is a direct summand
of a free module.

3 Results used to define LG
Let R be a commutative ring, f ∈ R. We quote the following result without proof.

Theorem 3.1 (Proposition 1.6.8 [Nee14]). Any triangulated category which admits all
countable coproducts is idempotent complete.

Corollary 3.2. HMF(R, f) is idempotent complete.

Proof. HMF(R, f) admits all countable coproducts and the shift functor X 7→ X[1] in-
duces a triangulated structure on HMF(R, f).

Corollary 3.3. hmf(R, f)ω is the full subcategory of direct summands of objects of hmf(R, f).

Proof. See Corollary 2.3.

Lemma 3.4. Let C be a preadditive category with a zero object and Cω its idempotent
completion. A functor C × C → Cω extends uniquely to a functor Cω × Cω → Cω.

Proof. We can embed C into Cω via the functor C 7→ (C, 0) or via the functor C 7→ (0, C).
Using this we can show (C × C)ω is Cω × Cω directly from the definition.
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