Understanding the significance and architecture

of AlphaFold

David Li
February 2022

Abstract

This paper presents an analysis of parts of AlphaFold, an attention-
based neural network which is capable of predicting protein structures
to high accuracy. A list of general purpose features in the AlphaFold
network, as well as plausible interpretations of these features, will also
be presented. In conjunction with analysing architectural elements of
AlphaFold, there will be discussion regarding AlphaFold’s ability to learn
and reason, and how this will impact machine learning and biological
computation in the future.

Contents
1 The Protein Folding Problem 2
2 Significance of AlphaFold 2
3 AlphaFold Architecture Overview 3
4 Communication 4
4.1 Pair Bias in Row Attention 4
4.2 Outer Product Mean 5
5 Triangles 6
5.1 Multiplicative Updates 6
5.2 Triangular Attentiono 7
6 Gating 7
6.1 Output Gates during Attention 8
6.2 Gates in Multiplicative Updates 9
7 Adaptive Computation Time 9
7.1 Invariant Point Attention 10
7.2 Recycling 10

7.3 Empirical evidence of IPA and Recycling’s effect on ACT . 10

8 Conclusion 11

1 The Protein Folding Problem

Proteins are large and complex molecules that form the basic building
blocks of life. They are responsible for essential tasks such as forming
antibodies and transporting and storing nutrients. Since a protein’s three
dimensional (3D) structure has a tangible impact on its function, an im-
portant problem in biology is the Protein Folding Problem: to predict the
3D shape of any protein given its contiguous chain of amino acids.

Each unique protein, which has a sequence of amino acids as its pri-
mary structure, gives rise to a corresponding three dimensional (3D) struc-
ture that the protein curls and folds up into, which consists of the protein’s
secondary, tertiary and quarternary structure. This process unlocks its bi-
ological functionality, and happens spontaneously in nature. The difficulty
of solving the protein folding problem follows from the vast number, type
and strength of various intramolecular forces that can have a significant
effect on the protein structure.

Prior to computational efforts to solve this problem, scientists would
have to undertake arduous, expensive and time-consuming methods, such
as X-ray crystallography, to uncover a protein’s 3D shape. However, Al-
phaFold is now able to produce highly accurate predictions proteins, many
of which do not share any part of its primary structure with other known
proteins. Thus, although AlphaFold cannot achieve 100 percent accu-
rate predictions, some experts consider the protein folding problem to be
solved sufficiently for experimental purpose.

2 Significance of AlphaFold

It is remarkable that there are very few explicit instructions in the Al-
phaFold network. Many human concepts in protein folding, such as alpha
helices and inter-molecular forces, may be implicitly learnt and under-
stood by AlphaFold, yet do not have a dedicated contribution to the loss
function. This suggests that the architectural elements in AlphaFold can
be repurposed to solve other problems. The network itself requires an
amino acid chain input, and outputs the 3D atomic coordinates of the
folded protein. By modifying databases and loss functions, a similar net-
work could be expected to perform tasks that require prediction of 3D
shapes from a contiguous input.

Moreover, there is evidence that AlphaFold possesses the ability to
reason, which is defined as the process of comprehending and inferring in
an orderly and rational way. There is a minimal number of handcrafted
features and loss functions in the network that prescribe what to learn
from the data and how to use its knowledge.[1] Instead, architectural
features of the network allow it to understand general rules and patterns
that are applicable in different situations, and then adapt and change its
understanding to solve the task at hand with high accuracy.[2]

The lack of prescribed features also induces creativity in the network.
Since there are no pre-specified concepts to learn, AlphaFold is not con-
strained by concepts deemed important to solve the protein folding prob-
lem a priori. Instead, there is full autonomy afforded to the network to

construct concepts that it itself deems sufficient to solve the problem.

Hence, AlphaFold’s success stems from its ability to understand con-
cepts, reason from them and create original knowledge. This builds upon
the previous success achieved by DeepMind in narrow domains with man-
made rules, such as Chess and Go. However, in solving the Protein Folding
Problem, AlphaFold has allowed AI to make the jump to solving funda-
mental biological problems that could tangibly impact humanity in the
years to come.

Therefore, AlphaFold’s success is like a stepping-stone in the Al devel-
opment journey, bridging the gap between narrow domains that demand
strategy, and gaining brain-like capabilities to not only solve problems in
nature, but identify them. This potential demonstrates that achieving in-
telligence more sophisticated than what we thought possible is now within
arm’s reach.

3 AlphaFold Architecture Overview

To preface this overview, this paper will not analyse an exhaustive list of
features in AlphaFold. This overview is thus intended to give adequate
context for the discussion of main features of the network. For more
details on the AlphaFold architecture, please see [1] and [3]. Moreover,
the notation used mirrors that in [3].

The AlphaFold network is composed of two towers. Upon input of the
primary structure, multiple protein databases are queried to find similar
evolutionary sequences from other species.

The first tower of the Evoformer refines the Multiple Sequence Align-
ment (MSA) representation. Due to the high computational costs of
N, feq X Nyes, AlphaFold utilises ” clustering” to reduce the number of se-
quences embedded into the MSA without significant losses in accuracy.
Clustering essentially groups all similar sequences by similarity into dif-
ferent clusters, with a representative chosen from each cluster to form the
MSA.[3] These representatives are embedded with extra features that de-
scribe its cluster, allowing all sequences to influence the final prediction.[3]

The database search also embeds a pair representation, in which each
entry a;; represents the distance between residues i and j. It is thus a
distogram, and refined in the second tower.

The first trunk of the network is the Evoformer, which consists of 48
blocks mostly made up of attention-based layers that alternate between
refining the MSA and pair representations. Attention is a mechanism that
allows the network to recognise which parts of the input is more important
in solving the problem. Details are presented in [4] and are omitted here.

Within the Evoformer, the MSA and pair representation towers con-
stantly communicate with each other to construct new sturctural hy-
potheses. This plays a critical role in the network in ensuring consistency
and equal importance being placed on both evolutionary and geometric
information.

In the tower that deals with the pair representation, the pair represen-
tations are transformed into graphs, and iteratively refined in the form of
triangular updates.

Within both towers, the network utilises gating in almost every iter-
ative layer to regulate memory flow throughout the network.

The second trunk of the network is the Stucture Module, in which the
refined MSA and pair representations are mapped to 3D coordinates. To
increase prediction accuracy, AlphaFold utilises Adaptive Computa-
tion Time (ACT) to extend the depth of the network for hard-to-predict
proteins.

These four features: communication, triangles, gating and ACT con-
sist of the most important parts of the AlphaFold network. Notably, they
are also general purpose features in the sense that they are not specific
to AlphaFold, and can be applied to other networks as well. This implies
that their implementation in other networks should also increase perfor-
mance. This ability to generalise across networks makes them the focus
of discussion for the remainder of the paper.

4 Communication

There are two avenues of communication in the Evoformer: pair represen-
tations communicated to the MSA via biases, and MSA representations
communicated to the pair representation via Outer Product Mean. Each
of these two forms of communication occur once in each block, implying a
total of 2 x 48 = 96 communications per cycle. This is in stark contrast to
previous, similar architectures which facilitates communication only once
in the network, upon completion of training.[1]

This continuous conversation between the MSA and pair representa-
tions allows for the iterative refinement of an initial structural hypothesis.
For example, similar genetic sequences may reveal amino acids A and B
have closely grouped residues. This information is then passed to the pair
representation through the Outer Product Mean layer. Upon update,
the pair representation may present a hypotheseis that, since A and B
are close, C and D must also be close. This is passed back to the MSA
through pair bias, where similar genetic sequences are consulted as to the
validity of this hypothesis.

4.1 Pair Bias in Row Attention

Attention begins in line 5 of algorithm 1, where the pair bias is added
h h

to the standard argument (qsi;” + b};) of the softmax function, where
the query and key vectors come from two different residues in the same
sequence.The query-key dot product expresses that the relationship be-
tween residues i and j are close to the extent that the dot product is large
and positive; the bias term conveys the prior hypothesis regarding the

distance between residues i and j.[4]

def MSARowAttentionWithPairBias({ms;}, {2}, c = 32, Niead = 8) :

Input projections
I: my; + LayerNorm(my,;)

2 g, kP vh = LinearNoBias(m.;)

3: b?} = LinearNoBias(LayerNorm(z;;))
4: gl = sigmoid (Linear(ms;))

Attention

5: aﬁj— = softmax; (ﬁ q?jk?) + b:l])

6 oy =gl o jagijv?j

Output projection
7: M, = Linear (concath (D?z'))

8 return {1hg}

qu,kﬁl,vfi eR® he{l,..., Nnead}

gh e R*

mg; € R

Figure 1: Row Attention Pseudocode [3]

Moreover, additive bias conveys a sense of Boolean logic. Boolean
addition can be interpreted as the logical expression ”OR”, which implies
that attention here would either deal with the MSA belief relating residues
i and j, or pair bias hypothesis relating i and j.[5] However, the explanation
is somewhat lacking in rigour.

Hence, it is more insightful to speculate why the authors did not use
multiplication to relate bias. Boolean multiplication has a much stronger
sense of conjunction than addition with disjunction.[5] This reveals that
the authors did not wish attention to focus on what both the MSA and
pair representations had in common, since that information must already
be learnt in previous blocks. Hence, additive bias provides new, but not
necessarily fruitful, suggestions as to what structures to try next. This
introduction of new hypothesis will then be tested throughout the rest of
the block.

The right hand expression of the Hadamard product in line 6 (Zg a?ijvgj
concludes the standard attention architecture.

4.2 Outer Product Mean

The outer product layer combines all the information from the MSA and
transmits it to the pair representations. In this layer, plausible structural
hypotheses inferred from evolutionary history are communicated to the
pair representations for further refinement. This is done via algorithm 2.

The use of the outer product bears semblance in interpretation to
Tensor Product Representations (TPR) used in Natural Language Pro-
cessing (NLP).[6, 7] Smolensky defined TPR as a representation of value
bindings.[8] In NLP, the TPR is used to bind a word’s role in a sentence to
the word itself, termed a filler.[7] Although there is no direct translation
of the NLP usage into AlphaFold, the Outer Product plays a similar role
in binding the genetic information of any pair of residues.

In algorithm 2, the intermediate tensor formed by as; ® bs; represents
the binding of genetic information. as; represents the genetic information

def OuterProductMean({ms;},c = 32):

1:

2

3:

my; < LayerNorm(my;)

: a4, by = Linear(my;) au. by € R
0;; = flatten (means(asi ® bsj)) 0i; € R°
: z;j = Linear(o;;) 2, € Re

: return {z;;}

Figure 2: Outer Product Mean [3]

from sequence s regarding residue i; bs; represents the genetic information
from sequence s regarding residue j. From the formation of these interme-
diate tensors, all available genetic information is combined through this
binding process via the outer product.

Next, computing the mean aggregates the bound representations, on
which an affine transformation is then performed to extract hypotheses
regarding the relative positions of residues i and j. This is the informa-
tion that is passed onto the pair representation, which will then test the
plausibility of these hypotheses with regard to other genetic information
passed on regarding other pairs of residues, and geometric and physical
constraints.

5 Triangles

When refining the pair representations, the Evoformer is designed to inter-
pret the primary structure in terms of graph theory, with each residue as
an entity and each entry in the pair representation as an edge. Each edge
is then updated using a triangular multiplicative updates and triangular
attention.

5.1 Multiplicative Updates

Triangular multiplicative updates are more symmetric and cheaper than
triangular attention, but the combined use increases accuracy.[1] Whilst
attention allows the Evoformer to distinguish between which residues have
the most impact, the physical and geometric restraints, such as the trian-
gular inequality on distance, mean that triangular multiplicative updates
are imperative in ensuring no excess attention is paid to a particular
residue subsequence. For example, whilst an alpha helix may be gener-
ated by residues in a close cluster, the Evoformer must not discard the
importance of residues distant from the helix to avoid an infinitely repeat-
ing helix / atoms curling into each other etc.

Hence, it would be fruitful to conduct ablation studies to determine the
impact on omitting these triangular multiplicative updates to determine
its contribution to prediction accuracy.

5.2 Triangular Attention

Holistically, the attention around starting and ending nodes allow further
geometric and chemical constraints to be learnt by the algorithm. For
example, a group of residues at the beginning of the sequence may have
partial positive charge, and further along the sequence there is another
group of residues with partial negative charge. The incorporation of the
third connecting edge informs the position of the residue with respect to
these “global” attractions between partially charged residues or groups of
residues.

(a) Starting Node (b) Ending Node
Figure 3: Triangular Attention [3]

In figures 3a and 3b, the blue edge, ij, is being updated, with entity
i being the starting node and entity j being the ending node. As such,
ij produces the query vector through a linear transformation. The green
edge produces the key and value vectors through a linear transformation;
the red edge produces the bias term through a linear transformation.

Although it is not feasible to deduce the exact function and inter-
pretation of the different edges in this triangular attention, one plausible
explanation may be as follows.

Without the bias term, this attention mechanism builds a relationship
between entities i and j using the most important interactions between
entities i and k as identified by attention.[4] This iterates for all entities
k, and computes a final updates for the edge ij.

However, this relationship is insufficient as chemical interactions is not
limited to i and k, but i, j and k, and perhaps extends to more entities and
in more complex ways. Hence, the bias edge at least allows for attention to
consider the tri-entity relationship explicitly, although implicitly attention
may be learning far more complex multi-entity relationships. Moreover,
the additive bias here has similar implications to what was discussed prior
regarding Boolean logic.

6 Gating

Gating is a concept that was developed to remedy Short-Term memory
in RNN’s. Over long input sequences, RNN’s may fail to carry forward

def TriangleAttentionStartingNode({zi;}, ¢ = 32, Niad = 1) :

#
1:

2

3:

Input projections

zij +— LayerNorm(z;)

: qi‘}., k:‘}vi‘j = LinearNoBias(z;;)

bi‘J = LinearNoBias(z;)

: gfj = sigmoid (Linear(z;;))

Attention

LT
: alty = softmaxy (ﬁ afy Kb+ b?k)

h

: _ oh h oh
P05 = B O 5 Qi Vik

Qutput projection

: Zij = Linear (concath[oi-‘j))

: return {Z;}

al KL vE € RE he {1,..., Niea}

gl eR®

zij € R

Figure 4: Triangular Attention [3]

information for the full length of input. RNN’s are also susceptible to
vanishing gradient problems in the early layers, thus not contributing to

learning.

Long Short Term Memory (LSTM) is an architecture that remedies
this problem.[9] It does this by introducing gates within cells of a vanilla
RNN. These gates learn what information is relevant and thus should be
remembered, and what should be discarded. This is achieved through sig-
moid functions, which squeezes values between 0 and 1. Through elemen-
twise multiplication, a gate with values near to 0 imply the corresponding
information in the cell should be forgotten, and values near 1 should be

remembered.

AlphaFold utilises gating in most layers of the Evoformer architec-
ture. Although there is not an exact correspondence between gates in
LSTM and in AlphaFold, there are similarities in interpretation, and thus

terminology from LSTM’s has been preserved.

6.1 Output Gates during Attention

Algorithms 1 and 4 are the archetype for two types of attention (MSA
and triangular) in the Transformer. Both layers implement output gates

upon completion of attention.

The element-wise multiplication by g? in line 6 of both algorithms
is strongly reminiscent of an output gate from LSTM’s. This choice of
architecture raises two points. Firstly, LSTM’s usually operate with three
gates: a forget gate, input gate and output gate.[9] The lack of forget
gate implies that the authors do not necessarily want to sacrifice any prior
information, especially given the prior discussion relating to clustering of
the MSA. The input gate is also left out as that would imply abandoning
information passed by the pair bias in algorithm 2, which would reduce
information flow between MSA and pair representations.

The presence of the output gate thus implies some information should

def TriangleMultiplicationOutgoing({z;;},c = 128) :

I: z;; + LayerNorm(z;;)

% ay, by; = sigmoid (Linear(z;)) © Linear(zq;) a;;,bi; € R°
3 g;; = sigmoid (Linear(z;)) g € R
4 Z;i; = gij © Linear(LayerNorm(3 ", ag @ bji)) Z;; € R
5 return {Z;}

Figure 5: Outgoing Triangular Multiplicative Update [3]

be forgotten at this stage in the algorithm. This is done through the
sigmoid function acting on the linear transform of the MSA in line 4,
which compresses values between 0 and 1. This is then used to regulate
what information should be passed on to the next layer for further re-
finement. Since attention has already been performed at this stage, some
hypotheses communicated by the pair representation may already have
been disproven, and the output gate regulates this such that it does not
waste valuable computation and memory in future layers.

6.2 Gates in Multiplicative Updates

Algorithm 5 showcases the Triangular Multiplicative Update layer using
outgoing edges. This layer utilises two gates: one in line 2 that strongly
resembles a forget gate, and the other constructed in line 3 is identical to
the output gates considered in the previous section.

As is standard, the forget gate consists of applying the sigmoid func-
tion to a linear transformation on the previous state. This has an ex-
planation in the biochemistry of the Protein Folding Problem - there are
certain residues with the potential to form stronger intramolecular bonds
than others, and so they are more important in determining the protein
structure. Hence, the interpretation of ”forgetting” certain aspects is lost
here. Instead, the gates here a more representative of [10]. The hadamard
product in line 2 allows for the forget gate and the linear transform on
the input to imposes dynamic gates upon each other. This may extract
information more efficiently due to the gradient advantages, although one
difference between here and [10] is additional parameters.

The output gate performs a similar role to the attention output gate
in regulating plausible structural predictions to ensure computation is not
wasted.

7 Adaptive Computation Time

Adaptive Computation Time (ACT), first introduced in [11], is a mecha-
nism that allows Recurrent Neural Networks (RNN) to dynamically learn
how many repetitions to ”ponder” its input before outputting the next
state. This idea is predicated on the idea that deeper networks have been
shown to perform better, yet both computational efficiency and ease of
learning mean that there is a cost-benefit decision in extending the depth

of networks. Hence, it would be optimal for the network to learn how
deep it should extend itself through ACT.

Although the number of cycles in AlphaFold is predetermined as op-
posed to dynamically learnt, there is evidence that ACT is achieved
through Invariant Point Attention (IPA) and recycling.

7.1 Invariant Point Attention

IPA is a new type of attention for dealing with 3D structures used in the
structure module. It does so through acting on a set of frames which are
parameterised in the structure module as Euclidean transforms.[3] This
allows maximal extraction of information in each cycle of training as this
type of attention is invariant under global rotations and translations. This
reduces the number of models the network has to assess since IPA ensures
the network understands rotating the global frame is inconsequential to
prediction.

AlphaFold achieves IPA through the L2-Norm of a vector, which rep-
resents the Euclidean distance from the origin of a vector space to the
vector co-ordinate and is itself invariant to translations and rotations.[3]

7.2 Recycling

Recycling is achieved through using the previous cycle’s output as the
new cycle’s input.[3] This allows the network to further refine structures
which is it less confident about, which is determined by an ”intrinsic model
accuracy estimate” named pLDDT. In a way, this is like increasing the
computation time the network spends on difficult proteins without explicit
instruction without suffering additional computational and memory cost
throughout each cycle.

7.3 Empirical evidence of IPA and Recycling’s ef-
fect on ACT

Test set of CASP14 domains Test set of PDB chains

With seif-cistilation training - 4
Baseline | A 3
100
No tempiates - 4
No audiary distogram head | - 4 st 20
Noraw visa | | 5
(use MSA pairwise frequencies) @ 6o
=
No IPA (use direct projection) TS I) g .
1
3
No auiliary masked MSA head -| [=GR
i = 2 — T1024D1
T1024 D2
No recyaling - = 4
veling i — T1084D1
No triangies, blasing or gating 0
(use axial attention) | P h " b 2 % ha 10
No end-to-end structure gradients
(keep auxillary headss) | 7 Evoformer block
No IPA and no recyeling - ===’ o e
T T T T T T T L
20 10 0o 4 =2 0 2 (b) GDT over tralnlng
GDTdifference compared IDDT-Ca difference
with baseline compared with baseline

(a) Ablation Studies

Figure 6: Interpreting Recycling [1]

10

Figure 6a shows the ablation studies conducted by DeepMind. Al-
though neither recycling nor removing IPA independently affects accuracy
greatly, the removal of both has a significant effect. This non-linearity
suggests that these features in the architecture have interactive roles.

From the previous analysis of IPA and recycling, it is reasonable to
think that the removal of both has a significant increase in the number
of "wrong” models AF has to compute. Lack of recycling not only re-
duces the number of blocks when training, but also reduces the number
of self-distilled examples; removal of IPA causes global transformations to
generate numerous wrong hypotheses that take up valuable computational
resources.

Figure 6b supports the hypothesis that recycling during training is a
variant of ACT that directs additional training resources to low-confidence
segments of the structure. The blue and orange lines represent proteins
from the T1024 domain, which is significantly easier to fold as opposed
to the T1064 domain, which is represented by the green line. Noting that
48 blocks consist of one layer, the T1024 domains reach its final level of
accuracy within half a cycle, whereas the more complex T1064 domain
require almost two and a half layers to achieve a significant increase in
accuracy.

8 Acknowledgements

I would like to thank my supervisor Daniel Murfet for being so kind,
patient and helpful in aiding me with research and editing. This paper
would not have been written without your encouragement, and I have
never learnt so much so quickly. I hope this contributes a brick to the
proverbial brick wall of knowledge.

9 Conclusion

This paper discussed the importance of AlphaFold to both biology and
machine learning communities, and its potential as a stepping stone to
more sophisticated Al. Four main general purpose features were analysed,
and plausible interpretations were presented. The fact that these features
are detachable from the AlphaFold network and applicable to others (in-
deed three out of four features were introduced in other networks) further
emphasise the point that AlphaFold’s success is due to its potential to
reason.

Hopefully AlphaFold’s emergence and success will catalyse the inven-
tion of more advanced neural networks that can accomplish even more
remarkable things.

References
[1] Jumper, J., Evans, R., Pritzel, A., et al., 2021, ‘Highly accurate pro-

tein structure prediction with AlphaFold’, Nature, vol. 596, pp. 583-
589

11

2]
3]
[4]
[5]

[6]

[7]

8]

[9]

AlQuraishi, M., 2019, ‘End-to-End differentiable Learning of Protein
Structure’, Cell Systems, vol. 8, no. 4, pp. 292-301.

Supplementary Materials to ‘Highly accurate protein structure predic-
tion with AlphaFold’.

Vaswani, A.| et a., 2017, ’Attention is all you need’, Advances in Neural
Information Processing Systems, pp. 5998-6008.

Boole, G., 1854, An Investigation of the Laws of Thought, Dover Pub-
lications, New York.

Huang, Q., Smolensky, P., et al., 2018, Tensor Product Generation
Networks for Deep NLP Modelling, Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1, pp. 1263-1273.

Huang, Q., Deng, L. et al., 2019, Attentive Tensor Product Learning.
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 1, pp.1344-1351.

Smolensky, P., 1990, *Tensor product variable binding and the repre-
sentation of symbolic structures in connectionist systems’, Artificial
Intelligence, vol. 46, pp. 159-216.

Hochreiter, S., Schmidhuber, J. 1997, ‘Long Short-term Memory’,
Neural Computation, vol. 9, no. 8, pp. 1735-1780.

[10] Wu, Y., Zhang, S., Zhang, Y., et al., 2016, ‘On Multiplicative Integra-

tion with Recurrent Neural Networks’, 30th International Conference
on Neural Information Processing Systems, no. 9, pp. 2864-2872.

[11] Graves, A., 2016, ‘Adaptive Computation Time for Recurrent Neural

Networks’, CoRR, 1603.08983.

12

