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Singular Learning Theory XII : Density of states 814121
Sl

The state density function v It) of [W, 54.2] is one of the most important mathematical

objects in singular learning theory . Its asymptotic behaviour as t→ O is controlled by the

singularities of the set of true parameters, and in particular by the RLCT X , and it is via

this dependence that X can be seen to control the Bayesian posterior (W, p .

33 ]
.

Thus
,
in

order to understand singular learning theory we must understand the state density function .

1. Introduction

In physics, particularly in solid statephysics and condensedmatterphysics, the density of
states (DOS) is a fundamentalmathematical object that reflects the basic structure of

the physical system .

For a systemwith N discrete configurations (e . g. a quantum particle in a box)
and volume V the density of states is

D (E) = IT €=
,

8 ( E - Ei ) un )

where Ei is the energy of the ith state , and 8 (E
- Ei ) = 1 if Ei = E and zero otherwise .

In this case the DOS is simply a histogram counting the number of states (per unit volume )

with a given energy . For a continuous system

D ( E ) = ¥ .

N (EtSE) - NCE) ( i. z )
DE

where NCE ) is the numberof states with energy E E . That is
,
DCE) is the number of new

States (per unit volume and energy ) accessible to the system when the allowed maximum energy
is increased from E to E t DE - of course , to make a rigorous definition

"number " must

be replaced by
"
measure

"
and some other subtleties dealtwith . Before doing so, however,

it will be instructive to consider a simple example where D lE ) is easily understood .
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Example For a free election gas in d dimensions ( K , Ch -
G
,
16.20) ] states are

d

parametried by wavevectors ke IR ( frequencies for waves in three spatial directions) and the

energy is Elk) = Em K' where K2 is the dot product of k with itself, ie . KI t Kj t KE, if d=3 .

The total number of states of energy E E is therefore proportional to the volume of a

sphere in k-space of radius E
'k
,
so NCE) x Edl ' and hence

dlz - I

D lE) x E (2. 1)

This formula is used in the (rough, first) treatment of semiconductors in (
K
,
Ch

- 8] see

[ K
, P -

218
, P -

219 ]
, which exhibits the basic role the DOS plays in solid statephysics.

However if the energy E depends on the parameters (k in this case ) in a less trivial

way then the function DfE) may be much more complicated; see the discussion of

van Hove singularities in CK, p .
129 ] and [ Y IF ] .

by
a

f
stales of energy E EtSE

> ka
^

\ states of energy E E

In mathematics the density of states is intimately related to the generalisation of Dirac distributions

to higher-dimensional submanifolds (Dirac distributions being the
"measurement " of functions at

a point , that is, a zero -dimensional submanifold). The generalisation is in the followingsense :

any distribution concentrated on a point x is a linear combination of the Dirac

distribution d (x) and its derivatives (as2 , Ch . 254.5] and for asubmanifold Z

cut out by smooth equations R = - - - = Psh = O an analogous role is played by the
"

generalised Dirac distribution
" 8( Pi, .

.
-

,
Pk ) and its derivatives (as I , p .

2097
.

The density of slates
"
is
" the parametersed family { 8 ( t

- E ) ) t of such distributions .
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Remark I'm actually notsure of a precise reference for the general statement ; it isn't in

Gelfand - Shiloh .

I think it is equivalentto saying 8113 .
. . .PK) generates a

certain D -module and this is related to K -
Vilonen

"
Intersection homology D-module

on local complete intersections with isolated singularities
"

Invent -

Math
.

1985
.

Remark one might expect derivatives 8 "
> ( t - E) to play some role in singular learning

theory
,
but I don't know what .

2- Volume between level sets

we fix UEIR
"

open and P
: U→ IR smooth

, following the notation of CASI, Ch .

3]

In the physics context Pwould be the energy E, while in singular learning theory it would

be the KL divergence K between the model and the truth .

Consider thepartition { P
- 'HITTER of U into fibers of P ( re - level sets )

H %K¥ 11
4

c- p
- ' H'ol

- - -# '

riito , } ""

% generic fiber
singular

← p
- ' ( ti )#g (smooth ) ) ) fiber
singular

f
Kh fiber

Yet:%¥st
. . I?
' I lit; l ) t

t - I to t
,

Two basic questions come tomind : which level sets are submanifolds
,
and as we

" flood thegraph
"

by

considering {xEU/ PGDET } for increasing values t, how quickly does the flooded area

increase as a function oft ? This is of course nothing else than the density ofstates .
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For a generic t, the preimage P
- ' (t) EU will be a submanifold ofdimension n - I .

More

precisely , recall ( B , theorems.
8 ] that if FP is nonzero (that is , some partial derivative

is nonzero ) at every point xEU with P(x ) = t (here t is fixed ) then P has rank 1

in an open neighbourhood of the closed set P
- '
(t) EU and hence P

- ' tt) is a regular

submanifold .

Now by sard 's theorem Caa, Theorem l -
12] the set of critical values of P

(that is
,
those tEIR for which there exists x EP

- ' It) with TP(x) = O) has measure

zero in IR . If t is not a critical value then P
- '

(t) is a submanifold, as we havejust shown .

Anotherway ofsaying this is that a generic level setis a smooth submanifold .

DEI we set crit ( P ) = txt U l TP (x ) = O } and call t EIR a regular value if

P
- '

( t) A Crit(P) = 0 and a critical value otherwise . If t is a regular value

wecall P
- ' ft) a regular fiber otherwise it is a singularfiber.

Remark while the singular fibers are
"
rare

"

they are inmany situations
"
more important

"

than the

regular fibers .

For instance if P = E is the energy then a fiber which contains
a local

minimax EU of the energy is a singular fiber . Inparticular if P30 (as is the

case in singular learning theory ) and P
-

Yo ) is nonempty Cte . the true distribution

is real isable ) then this fiber is singular .

Now let t ER be a regular value .

There is an open neighbourhood oft in IR consisting of

regular values, and for small h we consider the regular fibers Sh
=P

- '

l t th)

and how they vary with h, as shown below ,
where the arrows show TP.

Note that to a first

• ,
-
-
-
-
-
-
-

- approximation we have
.

-
-

-
-

y
-

-

•

.
. P (x thoPK) ) = Ppc) t Eih¥÷ )

'

( 4 - t)
•
i

=P (x ) t h HOP IT

.

•→
-
-
-
-

so that for h small , moving at x a distance 411JPY11
•→ -
-
-
-
-
- -

so su along the direction of FP gets youto the level set Sh .
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-

.

.

-

: whipped?. -
-

-

-

-
-

- 1/1/11 ' - - Sh is:D
x

•

/

-

-

DS
,
-

•
- '

.

.

So
-

.

.

Hence if we were to estimate the volume contained between the level sets So and Sh, we could

divide it into volume elements whose
" base " is a volume element d S on So and whose "height

"

( c n

is 4117Pll , leading to the definition (f being some function with compact support on IR
"

which we introduce so that the integrals are finite; you could think of this as the characteristic

function of the compactset of allowed states in the physics setting )

Y(x)

roll t
,
t th ) := 1,1¥ d S ( 5. 2)

Going by It . 2) it would be reasonable therefore to identify the density ofslates at energy to

(viewing P as the energy) to be (where V = Spy 'S doc )

Y

DI t ) = IT th Voll t , t th ) = IT Is
.

d s ( 5. 3)

Indeed up to a prefactor this is the definition arrived at in CK , p .

128 ]
.

Note that the density of
slates is non-negative, and large if H TP H is small on the level set So

,
that is

,
if the graph of P

is relatively flat above So (since t is a regular value it is never zero) . Indeed DC t) is itself a

reasonable measure of flatness above So = { x / PG) = t ) on the graph .
This measure

only applies for regular values t , but it stands to reason we could try to study it atsingular values t

by considering the behaviour of Dfs ) as s→ t .
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Example P = II ,Ki then TP = 2 ( x is -
- -

,
xn) and the regular values of t are 1121503 .

Fort to the level set so = P
- '

lt ) is a sphere of radius t
't'
and

Js
.

Ids = ↳⇐Ids =¥ bods x Ek . It
'''II th - '

c, , ,

which is of course in agreement with 12.1 ) .

Note that t - O is a singular value, with P
-

Yo ) = let
,

and limit→ o Dlt ) = O for n > 2 .

Note that in this example the limit of DCs) exists as s approaches a singular value .
More generally

if the only critical points x E P
-

Yt) are local minima and the Hessianof P is nondegenerate at

each such critical point, then Iims→ t Dls) can be treated as a limit ofa sum of

contributions like 15.4 ) and so this limit exists and is zero
.

In singular learning theory
these conditions hold for the zero level set of regular models .

In general we expect that

the integrand ¥11 in 15.3 ) will be large and positive at points x E Sh which "

converge
"

as h→ 0 to critical point of So (see the next example )
,
and that such "near critical points

"

will make largepositive contributions to Dls) . However as the previous exampleshows,

we cannot a priori rule out that also as s→ t the regionoverwhich ¥11 is large is

simultaneously shrinking , so that the integral Dls) ends up converging nonetheless as h-20 .

The next example shows a case where this
"

conspiracy
"

does not occur.

Example set P= of- y
'

and t = O which is a singular value . For small h, Sh
= P

- '

(h)

is a hyperbola and Hrh, o) E Sh have HTP It = RT so ¥, → N at

these points as h→ O.
We set Y la, y ) = e-

(""5)
then ash→ 0

So = P
- '

lo)

g.¥,
as → 41: d"

). . . . .

which diverges to too . This sketches an argument
that Dls) → D as s→ O .

← here TP a 2(x, x)
1181011 I 2Ex
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The divergence Dls)→ D should not be confused with some volume between level sets going to

infinity (as any such volume is bounded above by V) .

It means that forsufficiently small
hand s sufficiently close to zero the ratio th

Vol (s, s th) may be made arbitrarily large

l
l
l
l

•

"th) H "

I
' %
'
c

S
s

'

← S
s th

clearly then the asymptotic behaviour of the density of stales Dlt) as t approaches a critical

value is not easily understood for a general function l? Itmay not be immediately
obvious

,
but the coefficients and exponents in this asymptotic expansion determine important

physical properties in the case where P is an energy (YIF] and important observables such

as the Bayes generalisation error when P is the KL divergence of a (p, I if) triple in

singular learning theory .

Indeed by taking the resolution (W, p . 32) shows that

D (s ) - a s
't '

as s→ O ( 7. 2)

where X is the global RLCT.

In particular this diverges to ifKI and converges to

zero if X > 1 (e - g -
in the regularcase, which puts us in the setting of the example onp .⑥)
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3
. Density of states and curvature

we return briefly to the comments on flatness from p .⑤ .
Let x be a critical point of P. Then

fora vector E E IR
"

of small real numbers

TP (x t s ) = OP la) t ( FI, ¥373. (x) Ej ) ! , = Hla) E Cri)

where H (x) = (I¥zxjl") ) ⇐ i.jen is the Hessian matrix of P atx
.

If the matrix H Cx)

is invertible then by the Morse Lemma we may choose local coordinates such that, locally ,
P = Ei= ,

Xi xi and so H (x ) = diag (Xi, . . -in ) and H TP (x te) III Iii , Xi EE .

Recall that the eigenvalues of the Hessian measure curvature (to refresh your memory

consider f = a ,
aft -

-
-

t an art and thatthe osculating circle in the sci direction atthe

origin has radius Ri = Tai so the curvature in the sci direction is Zai ) so that Eiti
is a measure of total curvature .

I

(8.2)

TPGc) -- o
" E

,

So
Sh

Ift is a critical value of P
,
and So =P

- ' (t)
,
Sh = P

- '

( tth) as above
,
then for h small

the integral Ish Phds is dominated by parts of Sh close to critical points of P on So .

If the critical point is Morse lie . His nondegenerate) then ¥1 ~
'

Lei on these

regions, hence the suggestion that Isn lids for small h is a measure of flatness .

^

Note the Xi do not affect the exponent in (bi ) with P= Eitiai but they affect

the coefficient .

So in the asymptotic expansion (7- 2) we care about both the

exponentand coefficient .
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4. The definition of density of states

Before proceeding we have to face up to some flaws in this definition . Firstly , it appears to depend on

a choice of coordinates : firstly to define TP and secondly to choose a volume form DS on S

And of course atthe moment the justification hinges on 14.1 ) , an approximation . Following

[as I, Ch . 351-2] let us now give the
"correct

" derivation
.

We let P be as above and t EIR a regular value so that Sh =P
- '

ft th) is a regular

submanifold for h small . Let us revisit the diagram (5- t)
,
this time depicting So

,
Sh

as surfaces .
Consider the small volume IT depicted above , with vertex x C- So

i÷÷÷ t ''

on,

Suppose chosen some local coordinates uz , .
. . , Un on So at x so that P

,
uh
,

. -
-

,
Un give local

coordinates for x in IR
"

.

Assume the coordinates are chosenso that the "rectangle
" [0, D

" "

of side length 1 with corner x fits in thecoordinate chart . Then IT has volume h .
In more

sophisticated language the volume element is the n form dPo!uz - - - duh
. We can

relate this to a standard volume form dv= dx, - - - dxn on IR
"
via (with an=P)

dy = D (
"

u) d Pduz - - - dun (9.2)

where D (
"

u ) is the Jacobian
.

This shows that the n - I form D ( Te) daz -
- - dun is (up to a term

whose product with DP vanishes) independentof the choice of coordinates on So .

One shows

(see Las13 ) that this ambiguity vanishes on restriction to So, so in fact

w = ( D ( Yc ) )
"

duz - - - dun (9.3)
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Is an intrinsic n - I form on So depending only on a choice of volume form dv for IR
"

and P itself
.

This form w
,
which we think of as

" duldp
"

is the rate of change of the volume ITwith h

( the Ui are local coordinates , but since w is independent of this choice it is defined globally on So ) .

The functional which takes a compactly supported smooth function Y, restricts itto So and

integrates it againstw (i.e . the formula (5- 3)) is a distribution .

Our references for distributions are IFJ ), last .

Given an open set UE IR
"

we write

CF( V ) for the topological IR-vectorspace of
'' test functions

"

that is
,
smooth functions

f -

- U→ IR with compact support . A distribution for generalisedfunction) on U is a

continuous linearmap 2
: CF ( U)→ IR

.

Note that CE(U) is denoted K in (as I]
.

Deff Let t be a regular value of a smooth function l? The distribution 8It - P) is given by

restricting Y to So and integrating against the (n - 1) form w

Y 1-7 ↳Yw Y E CE (U)
,
U E IR

"

open
( lol )

Upto normalisation by the volume this means that the density of states D (t) with function Y

in 15-3) is the value of the Schwartz distribution 8ft - P) on T.

For standard reasons (see e.g . (W, Remark 4 - l p - 1107 ) itsuffices to define d ft - P) locally ,

e. g. on a coordinate patch where (9.3 ) applies .

If we assume 3¥
,
is nonzero at x C- So

and that P, uixz, . -
- sun =Xn give local coordinates at x ( as in [W, p . HD ) then

dxz - -
- doin

w = (Dtd ) )
"

duh - -
- dun = Taft ( 10.2)

and hence Slt
- P ) sends ( cf. the definition in [W, 54.2] )

y ,→ J 9ltM""-P does .
.
- doin 110.3)

12ftzx , It , xa, . . -pen )
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