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Singular Learning Theory 13 : Asymptotics of the free energy 1914121

In this note we examine the derivation (W- P . 31 - 33 ] of the asymptotic behaviour

ofthe free energy ofa singularmodel . The result isproven fully in [W, Main Theorem
6.2
, p . 174] and requires some substantial groundwork to establish rigorously . Our aim here

is to give a modest elaboration on Cw , p . 31-33 ] emphasising some conceptualpoints .

We assume familiarity with the thermodynamic pointof view on singular learning theory
elaborated in DLT2 . From this pointof view a thermodynamic system is completely
understood ifwe know its fundamental relation giving a thermodynamic potential
(energy, entropy or one of the Legendre transformssuch as the Helmholtz or Gibbs

free energies ) as a function of extensive or intensiveparameters . this determines the

behaviour of the system when an internal constraint is removed by the postulates [C, Postulate 2]

of thermodynamics and the equivalent form for potentials other than the entropy .

In DLT2

the analogy is made between the free energy Fon of LW] and the Gibbspotential
(DLT2, p . 14]

,
[DLT3] so that the appropriate principle is :

Gibbs Potential Minimum Principle the equilibrium value of any unconstrained internal

parameter in a system in contact with a thermal and apressure reservoirminimises

the Gibbspotential at constant temperature andpressure (those of the reservoir) .

It is important to keep in mind that the free energy is the logarithm of an integral over some setof states

consistentwith a constraint (atypical physical example is volume V) (C , 516 . D and thus the

free energy becomes a function of the value of that constraint. We view F
= F on as not

only depending on n, P but also on one (ormore) auxiliary analytic functions V : W→ R

so that F = Fln,B, V) . Taking this V into account allows us to study phases and phase
transitions (DLT3)

.

Hence ouraim in this note is tojustify [DLT 3
, p - 57

,
i - e .

Aim : derive the asymptotic behaviourof F (n . B, V) as n→ a .
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1. Coarse - gaining

From an information theoretic pointof view the idea ofa continuous parameter space W

is a useful mathematical fiction .

Since we can only ever gather finitely many bits of information

about the generating process out in the world (say finitely many numbers to finite precision) we

can only ever make finitelymany distinctions between possible models. So in fact statistical learning
is in practice nota matter of comparing points wi, wz E W but in fact is about comparing

compact subsets Wi
, We EW (for example Wi = { WE W I V (w) E [i , it I] ) a

partition of W by the values of some "observable
" V)

.

For models with a nondegenerate Fisher information metric the difference between comparing

points and comparing compactsets is only superficial : any comparison between sets will

reduce to a comparison between the local minima of the KL divergence they contain .

However the difference is profound in the singular case, because any integral over W near

a local minima of K will be strongly affected by singularities .

Since these integrals are the

only
"real

"

quantities, this means that at the wane -grained level atwhich we actually
"

perceive
" W

,
the behaviour is dominated by singularities (which are themselves in some

sense
" imperceptible

" since they live atthe fine -grained level ofpoints w E W which

we cannot have direct knowledge of ) .

Assume given a triple ( platwt , Etc) , Kw)) as usual, satisfying fundamental

conditions (It, II) with s = 2 .

Let W denote the space ofparameters, and

K : W→ R the KL divergence , kn the empirical estimate according to some sample Dn .

The posterior probability of WEW is [DLT2, p . ④ ] p (w I Dn ) dw = Yon T (w ) e-
" kn (w)

dw

and hence for any real analytic V
-

- W→ IR
, writing Jack b for £, - yea, by )

IP (aalla b ) = J p (w l Dn )dw
aa V ab

= #fan
, < b

Tcw ) e- nknlwldw
" -"
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As explained in [DLTZ, p .⑨ ] we view the tempered posterior pplw IDn) as the Boltzmann

distribution fora thermostatistical system with random Hamiltonian

Hn (w ) = nknlw) - t log Y(w) ( 3.1 )

so that e-
Pthlw)

= Tcw) e-
"Pknlw? Since W is compact we may set

Vmin = in f- { Vfw ) (WEW }
,

Vmax = { Vfw) / WEW } 13.2)

and adoptfor our fine-grain ing of W the
"

partition
"

of W into cells Wj determined by a partition
of the interval [Knin, Vmax ] as follows

Vm in = Ao La , s
- - - - < aj c ajt , L - -

- L Ant ,
= Vma x

(3.3 )

Wj = { WEW I g-EV (w) s ajti }

The following diagram fwm ( DLT 3 , p . ④) depicts an example where WE IR
'
and 11=11 - H
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If we average the posterior pMwlDn) over each cell then we obtain a coarse -grainy of
the posterior associated to 13.3) , which is a distribution over indicesje { Q -

→
N}

.
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ppl jl Dm) = fwj PP (wt Dn ) dw

= ztnfwjycw , e-npknlw)dw
'4 '

' )

Ifwe formulate this again as a Boltzmann distribution at inverse temperature B, with Hamiltonian

Mlj ) , then pB(j I Dn ) = Iz e
- PNG ) and 2- = Ej e

- PMG's
so

¥ e-Pali ) = ztnfwjylw) e-npknlw
)
dw 14.2)

x cj ) =
- flog ( Eon fwjylw) e- npknlwtdw )

= - tplogfwjycw) e- npknlw) dw t C

we refer to Mlj ) as the coarse-grained Hamiltonian and it governs (from the thermostatistical

perspective ) the probabilitiesof the "state
" transitioning between different values ofj . of course

up to the factor of pt this is precisely the free energy of the compactset Wj . Thus comparing
the free energies of Wj and Wk ( the standard method of model selection [WAK ] ) is equivalent

to comparing the coarse-grained Hamiltonian (and thus in a sense
the statistician choosing a

parameter in a sense is the dynamical system whose transitions are governed by H) .

Ourgoal is therefore to compute theasymptotics of integrals of the form

f.
away

9 (w ) e-
" Pknlw) dw (4.3 )

Remark For more on coarse -grain ing see (
EL

, P - 4833
,
Ka, p . 29 ]

,
LF]

.
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2. Asymptotics

Assume given a triple ( plat w), Etc) , 9 (w)) as usual, satisfying fundamental

conditions (It, II) with s = 2 .
Recall thatpart of fundamental condition ( I)

is realisability .

Given V -

- W→ R analytic the set l w e w I aE
V E b ) can be

cut out of W by two additional inequalities, and so [w, Main Theorem 6.2] applies

just as well to the parameter space V
- '

( Laib) ) as it does to W provided the

real isability condition still holds ( ie . Won v
- ' ( laid) to

,
and we may want

to choose a, b to be regular values of V to be safe ) .

However
, from the point of view of phase transitions we donot wish to assume this .

For this reason we follow the derivation on (W, p . 31-33 ] as closely as we are able,

up to thepoint where realisability is used .
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