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Singularleaning they : local RLCT
①

Throughout CW] means Watanabe 's book .
We work in the setting of

[W, 56 . B and assume Fundamental conditions (It, II) with s =3 .

(a somewhat informal, but more readable, account is given in (W, 51.4 ] ) .

In particular q (x) is real isable , and W is as in [w, Def
" G -

3 ] .

We aim to clarify (a) the role of localklcts ( to be defined )
and (b) the role of the prior in RLC Ts .

Setup Recall the partition ofparameter space of few, theorem 6.5 ] .
For some E 70 we replace W by

We = { we w I Klw) EE }

which is legitimate since we are only concerned with the RLCT, in this note .

ThenM -

- = g-
'

(We ) is covered by a finite set

M = U a Ma

where the Ma are a very particular kind of set ( not open ) given in
Remark 2- 14

,
and constructed as follows : for each per choose

an open subset of a coordinate chart centered on p of the form

Op ( b) : = f- b , b)
d
= { u = (Uy . . - , ud ) / lui Kb ki ed ) ( 1.1 )

where the dimension of W ( hence also M ) is d. The construction of
Remark 2.14 covers M by { Op (b ) )pen uses compactness to

choose a finite sub cover. For each p chosen , it then writes (using

again local coordinates)
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d

Op (b) = ( C- b, O] u [o, b ) ]
= C- b, o] x C-b, of x - - - x (- b, O]
U ( - b, OJ X - - - - - x [o ,

b ) u -
. .

= U!! Mi where Mi = [ 0 , b) d.

Asp ranges over the finite list of chosen point , and i over indices for these

sequences of
"positivenegative " choices for local coordinates Ui around p,

we enumerate some finite set of subset Ma EM such that M = Va Ma
.

There is an associated family of functions Gala ) with supp Ga E Ma
( Gala ) being Cw by the usual partition of unity tricks using the

prescribed 6am rather than = I check) such that for any integrable H,

Jw Hlwldw = felt ( glu ) ) 194411dm
ez . , )

= E×fmaH( glu ) ) Glu ) Ig ' tu) Idu

In Cw, theorem 6. 5) it continues to say that in each Ma (keeping in mind
a- Ui Eb ) there is a C - function 0/14) such that

K (glu ) ) = uZk= UZK ' . . - uZkd ki EIN

y ( glu ) ) Ig ' tu ) I = of (a) uh = flu ) uh '
.
- - uhd hi C- IN

( 2 -
L)

Hence 12 - 1) maybefurther refined to

Jw Hlw)9Hdw = {afmattlglu ) ) 4Th ) uhdu

where 4¥ (a) = Ga ( u ) Glu )
.

G. 3)
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Calculation consider the zeta function of the triple (p, 9,7, W)

} (z ) = Jw klutzy(w) dw ( Retz) 20) 13.1 )

which can be analytically continued [Withm b
-
b ] to a unique meromorphic

function on the entire complex plane whose poles are all real, negative and rational .

The learningcoefficient X is by def
" such that -X is the largest pole of 3G) .

Here klw) is defined by

K ( w ) = f q (x ) log⇒ doe (3.2)
plat w )

Note that the learning coefficient depends, in principle, on the prior 7,
whereas the Reallycanonical ( RL CT) , defined in (W , Def

"
2.7]

for the pair ( W, K ) is associated to { w l Kla) -03 independently of the

prior. As we will see , and as stated in [W, Remark 6.7C 1) I provided that
the prior is positive on { w I klw) = 03 (actually aweaker condition suffices)

the learning coefficient is equal to the RLCT, and in particular isindependent
Ikeprior

The first remark ( proofof [W, Theorem 6.6 ] ) is that for Retz ) > O

} ( z ) = Iwake k (wit Tcu) dw ← 3
,
CZ) ( 3.3 )

+ Jaw, > e KIWI 'TCwldw c- 32 (z)

and the second summand extends to a holomorphic function on the entire complex
plane , so in analysing X we may restrict to integrals over We as above .
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Then using ( 2.3)

3. G) = [Jm
,

UZKZ uh 4¥ (a) du (4-1)

Note that b la ) in the statement of [Within 2.3] is real analytic, so Glu )
may be taken real analytic provided T is (and we assume so ) .

In this case
,

by shrinking the Ma it necessary , we may arrange # cu ) to actually
havean expansion as

(2) .

4Th) = ¥µajU' t Rn la) .

14.2)

therefore in the region Retz ) 20, taking Na sufficiently large ,

3. (z ) = [ aE fmaaj ' UZKZ uh Uj du 14.3 )
lj Is Na

+ terms with holomorphic extension to all of Q .

Since Ma = [0 , b)
d
this is

= Eq,÷µaaj
" fu

, by
d
U
"" + htt

du 14.4)

= I aaj
'd )

,

b2kPZthp,

(Zkpzthptjpt 1)

Hence the function 3 , G) can be analytically continued as claimed, with poles
at the rational numbers (where h ,

k vary with a and I sped )

hp tjpt I
z =
-- 14.5)
zkp



s④
⑤

Then clearly the learning coefficient is

X - min
, Ipina (¥) . till

and its order ( the power of Zt X appearing in 14.4) ) . is

m= may # Ip I t - hz7÷ I . is:D

From this we can derive ( see ( W, p .
32
, p .

33] for the short version ) e - g .

F- on = Xlogn - cm - t ) log log n t FR ( 3) .
15.3 )

.

Remake Assuming Y > 0 on { w/ Klm - O } we may in the above

apply [With m 2.3] so that h depends only on (W , K ) ,
and then multiply by T and still satisfy the conditions of
[Withm 6.5133 ] .

That is
, we may arrange on each 2

This from the
Jacobian det

for he Nd to be independently .

Since k is
only , see e.g .

clearly independent, we have that D= X ( Pi Ecw ) p .

62 for

is independent of 7 and agrees with the RLCT of regular carry
[W, Def

" 2.7] .
Observe that the RLCT is defined as

RUT - wienfwimipnd ( YET ) .

Actually we only really need T > O on those Ma for which
the minimisation in (5. I ) is obtained . ( check)

Remick the priordoes affect the Schwartz distributions Dkm ( u ) on [W
, p -
32]

and hence the random variable 3 in 15.3 ) -

Daniel Murfet
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Deth we say WE W is essential for the tuple ( p, oh , W ) if the local resolution

of singularities around P= win [W, Det
'
z

- 7 ] produces

hp t I
= X ( the learning coefficient)

Necessarily we Wo =L w/ Kla) = O } is a singularpoint of Wo, and it
is an instance of the "worst ' ' singularity type .

Locatlambda

In the above we fixed a tuple (P, 9,7 W ) - By Fundamental condition
( I )

,
LW , Def

"

6.3 ] we have assumed that W is a compact set given by

W = { W E W "" l Tl , (w ) 70 , Tk (w ) 70, - - -

, Ik (w) 70}

where IT i
,

. . . ,
Tik : W ""→ IR are real analytic and W"" E Rd is open .

This hypothesis is used in a subtle butcrucial way in [W , Remark 2.14 ] ,
i. e. the construction of the Ma

, since we assume the resolution g : U→ W

makes Ti (glu ) ), . . .

,
Ik ( 9 (all normal crossing , i. e .

( tee (W
, p .
707 )

for any Uo E U
,
there is a local coordinate us .

t
.

Xi ( g ( u ) ) = ai la ) u
Kil

. . . u
kid

where ai ( u ) is everywhere nonzero . This means we may shrink the

Op ( b ) above if necessary , so that on each Ma the function Ii ( 9 Cut )

talentsign .
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Now let C E W be compact, defined by

C = { we w I f , (w ) 70 , .
.
.

, fe ( w ) 70 }

where fj are real -analytic . Then adding the f- to the list of functions
to be " resolved " Ci- e - made normal crossings ) we may assume that
the local coordinates u and Ma EM used above are adapted to C

in the sense that the boundary of g-
'

( C ) is contained in u , . - - ud = O

in every such coordinate chart (W, Remark Z - 127
.

We assume c- i. e. real isability
co = { W E K l K (w ) = O } is nonempty , and T

'
> 0 on C-o . for C

Lemme Let X denote the learning coefficient of the tuple (p, 9,9, W)
and Xc the learning coefficient of Cp, 9, Y ', C ) for any

prior Y
'

as above
.

Then Xc 7 X .

Proof We have

g-
' ( C ) = Ua g-

'CC ) hMa .

In the local coordinates u appropriate to Ma, g-
' l Cl nMa is

given by f , ( glut ) 70, - -
-

, fe ( glu ) ) 70 and wemay assume
the balls Op (b) are chosen small enough so that for each index
x in the relevant local coordinate

fj ( g tu ) ) = Cj (a) u
9J '

. . .
u9jd

where wemay assume Cj ( u ) takes a fixed sign on Ma .

By construction Mx is a product of C - b, o] and Co, b ) intervals ,

and let ma be the number of occurrences of C - b, O] .
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We may assume these are the coordinates uh, . -
- , Uma

Then f. (glu ) ) 70, - . .

, fe 19141170 on ML

←→ g. (a) u
9J '

. . .
u9jd > O on Ma tf Kj ed

⇒ f - I )%u9J x O on Md f IE j ed ( Tj -- sign of

( 9J :=9j , t
- - - t qjd )

g- )

⇒ ftp.q9ik . . . umami )ma > O on Ma H Kj ed

⇐ g. t ( Ej ) z t - - - t (Ej Jma is even
,
FIEj ed .

So either Jj t (g)It -
-

- t (g)ma is even for all I Ejed , in which
case g-

' (C) A Ma - Ma, or this sum is odd for some KjEd

in which case

g-
'

(c) AM a = { UE Mal u , = - - - = Uma - o }

Let A- denote the set of a indices , A's A- the set of indices for which

Jj t ( Ej ) at - - t (g) ma is even .

By def" Dc is the largest pole of

3C ( z ) =/
,

klutzy ' (w) dw

By restricting to We , Ce if necessary we may assume 9>0 on W and

Y
'
> 0 on C. Then in the partition of CW , Thm 6.5 ] we can assume

1g ' full = 4PM (a) uh and Yfgcu ) ) ( g
' lull = 9cg ( al ) 4PM(u ) uh
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so that of (a) = Kg ( u ) ) 4PM u )
,
hence in (2. 3)

4¥ ( u ) = Ga ( u ) flu )
.

=3 a cu ) 9cg In ) ) ofMu) .

We now compute for Retz ) > 0 using ( 2.3)

}c ( Z ) =/ K (w) Z y ' (w) dw Ck, h depending on a)
C

= Exfg - yo , n ma 1494159
' ( glut ) ofMu) uh du

= {afg . . mm,
U
"" uh ( Y ' ( glut ) 4PM u ) ) du

(C

By the earlier argument (e - g - in 14.2)) we may ignore , for the purpose
of computing Xc , the term in brackets involving T

'

.
So we must compute

the largestpole of

§ Ig - ye , my , UZKZ
th
du

= off , fma u
"" th

du t Ifs,

f
que . . . = um,of

"""
dm

= €1, T.IS?up2kPZthPdup
= Ey,
It

,

b2kPZ a . . ,

2 Kp Z th p t I



④

Note that these tuples k , he Nd are the same as used to define A , so that

Kamei: initial )
( IO - t )

> min ,7¥a(hE ) =3 . D

Resolutions and the posterior
-

Consider the function e-
"""" Y ? viewed as a density :

Y l

l

,

^

i - b-

" ¥
"

t ;
( lo -2)÷¥.

""

'

,

"

( each constant-x ,
slice is Gaussian

1
,

in y , ,
with variance going to zero

I ask , → 00 .

If we set x=x, y ,
and y

-

- y ,
this becomes a standard Gaussian

on My 70

e-City) y
'

= e-
H- Y
'

( 10.3 )

Put differently , if g :[0,55-71122 is gfx.is . ) - (Kyi , Yi ) and
f : R'→ IR is ffx , y ) = expl -K2 - y

' ) then f-( g (x, y , ) ) = exp ( - ( Itchy ,

' )
.

This is (one coordinate patch of ) the resolution of softy (W, Example 2.7 ] .
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The resolution procedure [w , 51-4.23 expresses the measure

exp l - n p kn (w) ) Kw) dw, whose normalisation is the Bayesian posterior,
as asymptotically approximated by a sum

§ exp f -npu2ktrnpuk3.lu ) ) of* (u) luh Idu ( Ili)

For the sake of building intuition let us ignore the stochastic process Zulu), and
the 4*14 ) (which is made up of the partition of unity and prior ) .

The luhl

is a Jacobian factor, which corresponds to pushing forward the measure

exp ( - n p U2
k ) die = exp f - n Bu ,

" '
-

- - ud
"'d
) ( ii. z )

along g : U→ W
. Recall that the index x is associated with a product

[ 0 ,
b ]d in some local coordinates (W ,

Remark 2 - 14 ] and Ill . It is

to be interpreted as each of these local patches Ma
= (o , b)

d
contributing

additively to approximate the posterior .

So what kind offunction is ( 11.2 ) on Ma = [0, b)
d ?

Uz X

#
each horizontal and

-
-

- - - -
- -

y
vertical slice is a ID

Gaussian with zero mean
1d * Hit)

µ . .

. I
iii. "

n:::÷:
#u

,(
exp C - n put us ) = c
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42 ^

14=21 12=-10,1 ) - -
- - - - - - -

-

,

one:±i÷÷
. I I

Gaussian in vertical slice

# Ul
level curve

similarly fork-41,0) .
The other cases are similar

,
but the approach tothe

coordinate hyperplanes is more gradual than Gaussian , e. g. in 12=10,2) we
have expl - input ) so the measure is more spread outalong the Ua axis .

In higherdimensions, e - g - d=3, the picture is similar . We pick some subset of
the coordinate hyperplanes ( those with the corresponding coordinate of K
nonzero) , place a large measure along those hyperplanes and

"wand

off the corners " near U=0. Higher indices ki correspond to flatter
approaches along thatcoordinate .

÷
14=31 12=11,1 , l ) expl - nickels ) .

-

' '

n

-
-

- Yu: Fos.-

-
-

i
-

t
-
-
.

UI

is:c's:
-

I:÷:
"

÷
.

i
.

I unmixed .

I l

l l

I
-

d
L
- -

J
U , \ I Uz
X -
\

,I -

-%

density on ( o , b)
3
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We now imagine a collection of such measures on sets Ma , each with
their own map ga

: Ma→ V to some neighborhood V of W, such that
a weighted sum over a of the pushforward of these measures along each g x

approximates the posterior on V.

To borrow from ( W, Fig 2.5, Fig 2. to ]
-

Ma,

Mae

" u

-11¥
↳ ! g ( 13.1 )

-
I

WoJ ,

W

p

(
posterior expl - n p Kulu) ) 9 (w) on V

this suggests a potential generalisation of implicit variational inference ,
which we termmpicna¥e ( MVI )

.

We fix an integer
S and let Go , . . .

, Gas be feedforward networks with weight vectors Oi ,
whose output are in IRD and whose inputs are in (O , if

d
- for each I e i E S

we choose a vector ki = ( Kii, - - -

i kid ) E IND and we introduce additional

weight ay .
-

, as which are logit for weighting each network .

We want to sample, for each is from a normalisation of exp C - ti u
ki )

where ti is some ( inverse ) temperature , pass that sample through Goa .
and sum these outputs with weights from a softmax of (ay . . .

,
as )

.
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Set Zi := Go
, id exp (

- ti U
ki) du . We assume some tagetweight

vector PE IN is specified (as in ( 13.1 ) ) and we wish to approximate the

posterior in a small neighborhood of P, e. g. to estimate the local RL CT. So
we use the output of each Goi as a delta from ' P

,
so that our probability

distribution associated to the parameters ( Oy . - -

, Os, ay - -

is
as ) is

exp (ai )
#€

, §explaj ) (Goi )* ( I. exp
l-ti u

ki ) ) t P ay .

. )

where (Goi )* means pushforward along the function computed by the
network Goi .

The idea behind MYI is that in the singular case , it is not enough to
think about modes and Gaussians ; you need to think in terms of the
distributions exp C- nfuk) on p .④

,
④ more generally , and howto

sum transformations of these . By universality and the resolution theorem

( eliding the difference between partition of unity and the softmax )
for some weights dy . - y Os you care approximate the true posterior
this way (asymptotically, as in [W, p .

33 ]
,
but this enough to compute

local RLCTs ) as s → no
,
the ki 's range over all tuples and the depths

of the Gd i go to infinity .
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Remade Consider the following graphs
x

\ - i

i

i
115.1)|i:÷:

i

i
-

X x

For x IO we have

II exp(-se ) = -2x exp C -so ) x - 2x t O (x3 )

115
. 2)

¥ expl -x 3) = - 3×2 exp l -K2) = - 3×2 t O (x4)

So the larger ki is, the flatter exp l - nfuk) is as we approach the ith
coordinate hyperplane in (o, b ]

d E Ma
.
But it is actually the transformed

measure Cll . I ) we are interested in .

It is notsimple to explain the interaction of
k
,
h in this formula directly , so to understand how h,k combine to determine

the local behaviourof the posterior, we switch to talking about volume .
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Effective number of parameters and the RLCT ④
-

considera regularmodel in a neighborhood of the true parameter, which
we may assume is wo=O, so that near Wo ( possibly afterchanging coordinates )

K (w ) - EE ,
WE 116.1 )

Consider the volume of almost correct parameters

✓ ( t ) = 1µW, at Tcu) dw . 116.2)

we know the prior is (almost ) irrelevant for the purposes of understanding the
RLCT

,
so for simplicity we take itto be uniform so that Vlt) is the volume of

all d - ball of radius the

Vlt ) x tdk ( 16.3 )

Hence for a > 0, at 1 we have

log { Hat) htt ) ) = log {
a
"- tdkltdk } ( 16.4 )

= log { qdk} = dlzloga .

Hence (W, theorem 7- D gives 1=42 , as the RLCT.

In the regular cone 2X is the number of parameters . We now proceed to

justify the claim that 2X is an appropriate definition of the effective number
ofparameters ingeneral , starting with a mildly singular case .
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Remark In the case 4=2 the relevant diagram is

÷:÷:
"

. ..

"

volume v it , at -- tdk

¥.-
W)
h > Wz

Eildy singular suppose now that near the true Wo we have

K (w ) x Eid ,
WE 117.2)

where d
'

s d .
Then this model is singular, and Kla ) at imposes no constraint

on the variables wait , , . . . ,
Wd so that ( with a nice choice of prior and local

neighborhood , but the details don't matter )

{ w I klwkt } = B ( Wo) x [ o , Dd
-d
'

( n .
3)

where B Ilk ( Wo) is a d
'
- ball of radius t

'k
around Wo

.
The volume is

V ft ) Ltd
'k

117.4 )

and hence the RLCT is 442 .
The RLCT (doubled) is the dimension

ofmaledictions to Wo = { WE WI KI w) = O } near Wo .

Daniel Murfet
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Note that
,
at least near Wo

,
{ wlklwko} has a free variable wi for i > d'

and hence dimension d - d
'

,
so the normal bundle is d

' dimensional . Hence

2X = d
'

is the number of directions we can vary Wo which cdengethekldinergene .

That is
,
2X is the effective numberof parameters in the model near ooo .

In the case d =3
,
d ' = 2 the relevant diagram is ( supposing klw) = w f t wE )

a
W3

"" '

tot¥÷:""""
"

l l

Genesisgutarcase in general while Wo = { w I klw) = O } is a real analytic set
it is not a submanifold, and near a singular point there is no naive notion of a
" normal direction "

.
So we cannotsimplywunt the number of normal directions

( for the same reason the tubular neighborhood theorem fails in algebraic geometry )
as we have done in ( 17.

I ) (where every direction was normal, as Wo was a

point ) and 118 .
l ) (where Wo was a line and there are two normal directions ) .

Remake If Wo E Wo is a nondegenerate critical point of Wo (noting that
the degenerate ones have measure zero, so this accounts for "most

"

true parameters ) then the local 7 near Wo will simply be
d42

where d
'
is the number of normal directions to Wo near wo

( as Wo looks like a submanifold near Wo )
.
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However the volume ratios
,
which give the dimension of the normal bundle in the

regular and "mildly singular
"
cases; are still well- defined and by [w, Thm 7- D

log { V lat ) / ult ) ) (a > o, at l )
X = l im
-

t-so toga

Here is how to think about this : suppose someone gave you the loss surface

{ (w ,
Nwt) l w EW } and a point Wo EW . You start computing volumes

v lo .

99 t )
,
VIt) for some small values of t

.

This involves cutoffs and priors
but the ratio V 10.99t ) / y l t ) is basically independent of these .

And

that someone says to you : ilygularmodel,whud
thedi¥mabudebe?

That is
,
what dimensionality would these volumes have , if they were d

' balls

for some d
' ? The answer to this question is what 2X computes , hence why

Watanabe refers to this as dimension in (W, Remark 7- IT .

Of course 2X need not be an integer, butthis corresponds to the fact that there

is no " true " normal bundle
, so
there cannot really be an integral " effective

"

number of parameters in a singular model at a degenerate critical point .

Remade the RLCT is not a measure of ' 'flatness " in the same sense as e - g .

the determinant of the Hessian : note that in the regularcase it is 4/2

regardless of the eigenvalues .
Instead the RLC T is a kind of "count

"

of the inflation ,
at least indirectly

,
since

small X ⇒ small normal bundle⇒ many flat directions .



③

teaming coefficients. generalisation

Suppose as above we have ( p, E ,W, Y ) and C E W compact , with 9 (x)

real isable by some parameter in C, let Xc be the learning coefficient for C .

Then with ( p, E , C, Y
' ) as our input to [w, 56 ] we have Cat B =L )

El Bgc ] = In t o ( t ) ( wi )

where Bgc is the Bayes generalisation error (W , co - l ) )
. By ( w, Def

"

6.5]

Bgc : = Ex ( log 91×4 Ew [ plxlw ) ] ]

where Ex means 194K-I dx and

Ew ( pl Xt w ) ] = f p (w/ Dn ) p (XI w ) du

= ztfplxlw) exp L- npknlw) ) dm

is the L-YelpvedicH@isnbuHoi.So Bgc is the KL divergence between
the true distribution andthe C- restricted predictive distribution, and the
stochastic ily involved in sampling Dn makes Bg

'

a random variable . The

expectation in (20.1 ) integrates out this stochastic ty .



sd④
②

Conclusions ig picture

so the picture is the following : supposing q is real is able by Cp , W ), the

set Wo = { WE W l Khe ) = O } is nonempty , and in general a complex
real analytic set with multiple components and singularities :

.
.

-

'

' 121 .

I )

/⑨ 4

- - - Wo4

Wos Wo

.

-

-

y
'

Shown are three points w
'
o , we , Wos, wit E Wo and compact Ci

E W

containing them .

The point w04 is an isolated zero of Klw ) and while
it may nonetheless be a degenerate critical point, let us imagine it to
be nondegenerate so 7cg = d 12

. The point WE is a smooth point of
Wo and looks perhaps like the "mild

"

case above , ie . locally klw)= Eid
'

, Wo?
with Xc

,
= d '

k s d12 , and locally d
'
honest normal directions

to the set of true parameters .

The point Wo
'

is a more complex singularity , and Wo
'

more complex still ,
so that we have

X c ,
s X ca s Dcs C X e y

= dlz

Hence at a given dataset size , we have the same relationship between

the Bayesian generalisation errors .
The models near Wo

'
have the least number

of effective parameters, or degrees of freedom , and generative best .


