
Singularearning theory : symmetry and RLCT "w
①

The central statement of singular learning theory is that the Bayes generalisation
error of a singular model is determined by the RLC T, and in contradistinction
to the case of regular models, the RLCTisnotdete-minedbylh-enumberofparametebl.nl#e. With a fixed class of models

,
the RLCT varies as

the true distribution varies .

In connection with this, Watanabe [w, 57.6 ]

makes the remarkable
,
and somewhat cryptic, statement that

simple function ⇐ complicated singularities
( 1.1)

complicated function ⇒ simple singularities .

Here "function
" refers to the true distribution

, and the complexity of
a singularity is measured by the RLCT ( complex singularities have smaller
RLCTS ) .

Since Kolmogorov complexity , and other complexity measures,
lie at the heart of information theory , the above statement is

potentially one of the 'deepest insights of statistical learning theory
and information science, but it is not widely known .

In order to make Watanabe 's discovery more accessible, we exhibit

in this note the connection between complexity of functions and
complexity of singularities in what we hope is a simple and
transparent way , by emphasising the role of symmetry .

A highly symmetric function is simple, because it can be described with
less information : a rotationally invariant function ffx,y) may be described

as a function g (r) .
Let us explain how highly symmetric true distributions

q ( y l x ) lead to small RLC Ts .
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Remand Recall the RUT is a measure of "effective numberof parameters " in
a model close to the most complex singularity of the set of time parameters,
in the sense that in local coordinates Uy . - - -

, ud the setof true

parameters is u, = -
- -
= 425-0 where X is the RLCT ( this

is only strictly true in the "mildly singular " case, e.g . reduced rank

regression ) . Since varying the remaining Uzxti, - - -

, Ud doesn't

change the "fit
' ' of the model, we do not count them as parameters .

We take the same setup as the
" Fisher for feedforward " notes ffor@,

but where ffx, ex ) is not necessarily a Rew network .

Then

Klw ) = / qlylx ) q (x) log pfyYwj dxdy .

l l . l )

we dent assume the true distribution is real isable, set wa
- { w/ KIWI = a }

As discussed in beginning on p .④, for C E W compact ( ignoring priors )

if Wo n CF 4 the local RLCT 27C is a measure of the effective

codimension of Wo AC in C ( very roughly ) . In particular,
it seems reasonable to assume that the more directions at PE WoAC

tangent to Won C, the smaller the RLCT (this is strictly true in the
"mildly singular

"
case from p .④I

.

Suppose given a group G , and (not nec .

continuous ) actions G x W→ W
,

written ( g ,w)t g - w
, and a x R

"
→ IRN

,
written Cg , x ) t ga -

Deth we say the pairing f : IR
"
x W→ IRM is Ginvaviant if

f- ( gx, g w ) = f- (x, w ) ( I - 2)

for all x E IRN, WE W, g EG (equiv.
f- ( gx, w ) = f- (x, g-

'

w ) for all x, w , g ) .



②

Exempted Consider a two layer feedforward Rennet

Wil b
,

•- • 911
WIZ

a call

•-
•

912
W
22 bz

with W = BI ( O ) C- 1139 for some K
,
N=2 and M =/

,
and

w = (Wh , Wiz , Uzi , Wzz, by bz, 911,912 , C l ) determining for a = (Xi , Xz )

f- (x, w ) = 911 Rew ( Wilk, t Wizxz t bi )

t 912 Rew (Wu Xi twzzxztbz ) t C , .
( Z - Z )

T
c , so

911 > 0

912 ? O(Wu , Wiz)\/(Wu, Wu) /
T

:

Let 6=012) act on IR
"
= 1122 as usual

,
and on W by

g - W = ( g wi .
, g wz .

,
bi
,
bz
, 911,912 , Ci ) .

(2-3)

where w , •
= (Wii , Wiz )T, wz . = ( Wei

,
Wu )

T
. We claim that

f : IRN xw→ Ris G - invariant
,
with respect to these actions . Writing

< ,> for the dot product this follows fwm



③

f- ( ga, g w) = 911 Rew (( g wi. , 9k) t bi )

t 912 Rew (L g wa . , ga ) t b2) tc , .

= gu Rew ( L wi. , x) t
bi ) 13.1 )

t 912 ReLV ( C wz. , x) t be )
t C ,

= f- (x, w) .

More generally :

Lemme Let f :B
"xw→ IRM be a Rew network of arbitrary depth,

and represent Was W ,
x W
'
where W

,
= ( R" ) dare the weights

in the first layer :

• ,

•

"
Wii

"
i w = ( wi .

,
Wz•

, - .
.

,
Wdoo

,

W
' ) E W

•
• i wi . = ( wit

, . . . , win ) E IR
"

'

:

•
µ

:

• d

we let 6=0(N ) act on IRN in the standard way, and on W by

Gx W , xw
'

-7 W, x W
'

( 9
,
(wi . , . .

-

, Wd .) , W
' ) → ( g w , • , . . . , g Wd . , w

' )
.

Then f is G -invariant .

Proof In the first layer, f- computes pre -activations as

x 1-7 ( Cwi . ,x7, - - -

,
LW doo , x> )

. D



④

Lemme Iff is a - invariant then ply 1979W ) = ply Ix , w )

Pioof Clear since ply IM w) -

-
= cz÷k exp (- IH y - Ha, w) H2 ) . D

Proposition Leta be a group acting on IR
"
and W such that f- is

G - invariant and

( i ) q ( yl g x ) = q ( yl x ) for all x c- IRN
, ye IR? g e a

Cii ) q ( x ) = 9 ( ga ) for all xf RN, g c-A

Ciii ) Forge G the action g - C- I '
- IR"→ IRN is smooth

and I deff D g) (a) 1=1 for all x C- IRN
.

Then Klw) = Klgw) for all WE W, g EG .

Peut Klgw) =/ qlylx ) q (x) log9lYPly la , guy
dxdy

=/ q ( y la) q ( x ) log9lY dxdy
ply I g-

'

so
,
w )

= 19 ( yl g-
'

x ) g ( g-
'

a) log 9 ( yl 5k )
⇒

dxdy

Since g - t ) : RN→ RN is smooth and bijective ,

q ( y Ix )
= Iq ( yl x ) g ( x) log ,⇒w, I deff Jg ) G) I dxdy
= Klw) . D

corollary The level sets Wa E W are G - invariant .



⑤

Exempted In the situation of Example 1, we assume q (x) is an Ok)
- invariant

distribution on R2, e. g. a normal distribution centered at Q , and

an example of g ( y )x ) satisfying hypothesis ( i ) of the proposition is

9.Hk) = hath exp f- Ill y -- her ) H2 )
where r = Hall

, for any continuous function h :[
0
, a)→ IR

.

Then the proposition applies and all the level sets Wa are Ok ) - invariant .

Theproblem here is that an O (2) - invariant true distribution which is
non constant seems not to be realisable by a finite -depth ReLU network .

However we can consider real is able true distributions which are invariant under

finite subgroups GE O (2) .

Exempted Consider a depth two ReLU network ft , w ) : 1122→ IR where the

hyperplanes Cwi • , x > t bi = O ( for l E i Ed indexing a

node in the first hidden layer ) are mapped to one another

by a finite subgroup GE O (2) generated by rotations by II , e. g .
XZ

-

r
'
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This is a constraint on Wo E W which ensures that q ( y Ix ) :=p ( y la , Wo )

satisfies the invariance condition of the Proposition on p . ④ for g EG .
So

this true distribution is both G - invariant and real isable ( by construction ) .

More generally , let a E OCN) be a finite subgroup , 6=597 and suppose
the network is given by weights Wo = ( (wi . ) it , , boo

, 9. , c , ) as in

•
I
b l

Wii

•
I

w •
2¥ ;
7.i '

•2wd✓ (Gil )
- Wdc 9 d'

'

• µ
#

• d

b. d

such that there is a permutation 2 C- Sd with

N

( i) as functions IR→ IR for ie ie d

( wi. , g x) t bi
= L Waco) . , x) t b sci ) (6.2)

( ii ) 9 sci ) = 9 i for le i Ed .

Then d

f- ( g x, Wo) = c
, t E 9 i Rew ( Lw i.

, g x> t bi ) (6.3)
i = I

= C , t Ec. 9%; Rew ( Swoc is . , x> t b sci ))

= f ( x , Wo) .



⑦

Note that condition Iii ) can be realised by taking all go equal . To reason
about ti ) let us assume none of the wi . are zero vectors , so

<wi .
,
-7 : R

"
→ IR is surjective and RYKER where k is the kernel

.

N
let to. ER be such that Cwi .

,
- ti > = bi . Then

< wi .
,
a > t bi = O ←→ L wi .

,
x- ti> = O

and ( 6.2) is equivalent to ( writing ti = g g
- '
ti )

< g-
'

wi . , x
- g-

' ti ) = two cis . , x - to cis>

which we can arrange by e. g . g-
'
wi . = Wocis . and g-

' ti - t Gci )
.

Lemme Let GE OCN ) be a finite group generated by 9 , and suppose
( wi . , .

- -

, Wd . ) E ( IRN )
d
and ( ti

, .
. . ,
td) E ( IRN )d and 3 C- Sd

are such that

(a) g-
'
wi .
= Wai ) . for all I E is d

(b) g-
' ti = to cc. ) for all I e i E d

.

Then let w
.

= ( (wi . )
,
l - Cwi .

,
ti 7) id , , (g) it , , c )

be the parameters for a two- layer feedforward Rew network
as in 16.1 )

,
from IRN→ IR

,
with biases bi = - Lwi . , ti7,

and q ,
CE R arbitrary . Then

f- ( g x, Wo ) = f ( x, Wo ) Hae IRN
.

Boot same calculation as ( 6.3)
,
lie .



⑧

f- ( ga, Wo ) = c t q Eid ,
Rew ( (wi . , g x> t bi )

= c t q Eid ,
Rew ( Cwi . , ga - ti> ) ( 8. i )

= c t q E ;-7 , Rew (s g-
' ( wi . ) , x - g-

'

(tix )

= C t g Eid ,
Rew ( s Wo lis . , x - t slip )

= floc, Wo ) . D

Examplelt To revisit Example 3 more concretely, let g e O (2) be rotation

by Fh anticlockwise for some m73 and let a =L97 = 74m2 .

Let t, := g
'k ( 1,05 where g

'k
is rotation by Ehr , define

also wi . = ti : = gits , for Isi E m .

÷
m=6

: ÷:

( 8. 2)
Hi

-
-#µ , y , , ,w , .,, + ↳

, og

then g-
'
wi .
- gi - '

t
,
= w ii. is . and g-

' ti = ti - i where indices

are read modulo rn
, so

with 3 the cyclic permutation the hypotheses hold .



⑨

Taking q (yl x ) : = ply ) x , Wo ) for such Wo constructs a Im - invariant
real is able true distribution for any m> 3 .

Notice that this true distribution

is real isable for the Rew architecture with d nodes in the hidden layer

for any DD m ( taking some gits to be zero) .

Considera two - layer Rew network architecture f : R2 x W→ R
with d nodes in the hidden layer, where W is compact and O (2) - invariant .

For me d let gm ( y l x) be the Im - invariant real isable true distribution

constructed above and Im its RLCT relative to some fixed prior .

Cenjecture Xm is a decreasing function of m -

Less formally

A more symmetric true distribution⇒ smaller RLCT

" simpler function
" "

more complicated singularity
"

In theirpublished work on RLCTs , Watanabe and collaborators tend to focus on
rather simple true distributions, because it is already difficult to theoretically
analyse the RLCT in these cases . However the deep idea on p -① is best illustrated

with more interesting true distributions, and experimental approximation to the RLCT.

Remade wejustify the application of singular learning theory to ReLV
networks by the "soft Rew trick

"
.

Remain The idea of studying figures in the plane in connection with properties
of neural networks is inspired by Minsky & Papert 's book
" Perceptions : an introduction to computational geometry

"

.


