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Theve are a gvowing numbev of remarkable expevimentul ﬁ‘nch’ngs in deep leavning,

for which iFuould be desivable o have a theovefical explanation. These jnclude -

* The genevalisation puzzle - fhe fuctthal cleep /eam;’n\g wovks atall,

and moveover confinues fo implove Dm\rmawy orders O}p ma\gn)’mo/e in

datasetsize, mocle| size and computational resources, alveacly shiking.
See D for a more precise disca 30N,

* Fower laws - asobsewed /in [H7, [0A 1]/ [0A2] fheve is expevmental

eviclence in the conte xz"af Transformer moclels Dainecl on [ay\aua% ook
for fhe —]Co“OLoing power |aw [OF} 1, (l.l)]

0.095
]_(VLB = (hc/nx ne ~ 5.4« (O(3 ((.1)

wheve (1) is the Tesk lors for o Iar{je_ model dained with ewlx\/] S{‘op}amj
on o dataset e size .

what light can sinqular leavning theow shed on these Sinclings 7 Since neural
netwosks cure singular fhe theow is arguably necensony but in ifs curvent stade it s

notsufficient. Tnthis nole we addreos the key obsfacles fo CC/D/JZy/'nﬂ singulay leavning
fheow fo modem deepneurpl nefworks:

I> The P\recficﬁl/e dishibution seems }m/evanff'oc/eep learning Pmcﬁce
I) RelU networks ave nof awalé/ﬁc

) The bue dishibuton is nof realisable
V) Esﬁmah‘hg The learning coefficient at scale is /'mlbmcfz‘ca{



G

T. The predichive dishibution seems jnelevant ©)

We consider acompact spae W of newal network weights and model claus
P{g]x,w) wo in Eorw). Weéayw'an]:w;lew’or associatecl o a clalauef
Dn (re o baininguet oF-uize nsampled fom the fwe clishibution g (y /%) q(x)J is

devived an follows [W/ §1.3. /_7 f@m Bag(w’mle g

P(Onlw) p(w)
P(Dn)

P(wanﬁ =

= ZT{W) l ll P(Ye|Xe,w) (2-1),

wheve Dn= {(x‘/\f'>/ ) (M,Ym)}) F(w) s the prior and Zn is a norma}/'Jl‘nﬁ wnifant
The Pmscl[cHVP distnbution P* (s

Plslx) = ply)= D) = fP(a |30 p(w | OnY dus (2.2)

Sir\aulavﬂ'ﬁ leavning theowy is largely concevned with the predichive dishibution, as for e xaimple
fhe cenhul c,{,mni—ihj in the ﬁ/neovy s the B_ay@ofangenemluaﬁun evor (b (1.0) [;7{’)

B, (n) = Delq Il P*)

clxdtj (23)

This is clearly not what- people mean by generalisation ewor in deep leowning -
hey mecin he loss on fhe fest et of a single model /D(H/Z/w*) where ™
is obfarned by SGD }mfmnj. Since we cannof ecuily sample from he Bayeoran
posfevior we cannet compute the predictive dishibution, andso ife performance
appean fo be inelevant 4o deep Jearning practice . So is smyula//eammf) H]eoy
ﬁtlfzm_cj about 2 quantihy @3 (n) #hat is of on/j theovetical interest?
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No{‘cruﬁ-e ) The response ot a dafishician VV)I‘@M be the —ﬁ)//ow}ng avammgy,f/ token
fom [WBICT. Noe #hat

L = f Er(yglxa,w)ﬁ’(w)dw (21)

s a funchion on Sz(”%mx R ) wheve The moclel inputs x € R™ and outpuls ye /RW*\)
and that  (see (W, Remark 1107 )

on ‘7(%) dxc\ﬂ = f{ﬂfj ff(}ﬁlz;)w) o\jd > ﬂ(x) Y(w) dxdw
- [ ety dedes = 1 ™

Hene Zn ° ,Sl — [R-) called the eviclence , marginail likelihoool or

pavtifion function, may be wsed in the {oHowimﬂ way « given o proposed poir
(,D(&j/:f,W), Plw)) we prepaire the mavginal likelihood Zn ancl waitfor the
sample Dn 10 anive . If #he model is a “go0d fit" in that Z. evaluated on #hat
S&tmp)e is |/\i31'\) then the “evidence" fov the Pa;'r (p/j/%tﬂ) 30(‘4’)) s hfg}\.

If Zais small, fhen 2a9 () an adisbution on S is assigning ]owaloilﬁj/
massTo cveon thatare ot realised %'C/ fhe Pie d;‘#w’buﬁ()n) and p (9]2w), Flw)
is therefore abad FHE.

As Wedunabe anites in the imhoduction 1o [WB(CI fhe B_ay@ free energy

,]’—j\
Foo —logZe (2= ) (as3)

s adecreaving funcfionof Zn, so in statisfical model eva(uaﬁon&ou wank
Fo choose models with k‘"ﬁh evidente Zn and hence Jow free enemy Fa .
As defailed in [w1, [WBICT 4he free energy is related +o the predictive dishibution and BJ(W).
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However, here we encounser a gap : pobody fortes me fo aclopt model velection

accortling fothe likelihood )oViVlcip/e elaborated above. This is a foundational
c/uwﬁon Bidafidis. If cleep Jeaming Pmcﬁﬁonm tompaved neural network
avehitectures by wompaving their evidence in the above Jense anel selecting the one
with higlnmfevn‘deme then singular leavning Theowj would enable compavison

01? avthite churen bj e-q. eahmation O?{»a RLCTs (since these are reladed Fo ILY/L)

Ferhaps Prac%'onem should clo this but fhe fmlo/e,m s fo explain 3enemh‘wn'7"0n

Hor deep neural netwovks on the ferms dictated by deep learning Pmc;‘v‘ﬁo eva | nof on ferms
dictated from the outside by sfahistical authorhies. So we have a pwoblem: howto relake
“performance onthe fest set” as a metic of mvdel velection to the evideute Z.7

T.1 From Test loss 4o Cubbs je\oemlisaﬁon enor

Here is how model selection in cleep /eamw'ng adua”y wovks. LeFuntuke
compufevvision as an example. The Tmage Nef datasel waa publishecl in 2009
aF VPR [T ] Avadetarled /7/'5h)VﬂJee [L]. The Image/\/e/' Lavge Jcale
Visual Recognition Challenge (I LSVRC) man fom 2010=2017 and iF
was the 2012 enhy AlexNetin this challenge which is widely cred/fed with
widespread interest jn dleep leavning model)s. This vepregenss one o #he

most hisﬁ)w'ca’//j clecisive instances of modle] selection in practice (people
5w/}ch/'n3 fom other kinds of models fo cleep learmng ).

The TL SVRC wovked an follows : evew jearﬁe onjcmz'fe/d /mlo}/uhed a
fm/mmﬂ sef of | Z million imagen (Jee jmage -net- org ). (ontestzints hain
their models on thissef D, n=1.2 ></0€ and the winner was decclec
accoreling fo pevformance on o held-oul feat-set Tm A m= 1 Sx 107

images, sampled fom the same Muie dishibution (/’magw collected from
Flickr and search engines ) an the ajning sef.



In machine leavn ing jenem//}aﬁ()n evror (meam'ng evvor on the featset ) s #he
primay imethod of mocle| selection [GBC,55.2], anthe example of TLS\RC
demonshrates. Goingforward I will woe the ferm ”3et/)em//mf7'dn enor " jn s

sense ancl we “Baym/'an ﬂmem/ﬁraﬁm emor" 1o mean Eg(n).

Noe further fhan in prochice the freld of dleep Ieavn;'n9 is organised fm"emal)y avound
dafasets suchans ImageNet, and competifions Juch an TLSVRC, with fixed
Praining sefs Dn. against which mulfiple wntestants ain a range of models,

say p(9lTwy, -, P (917W). We could imagine Tuo covnpefition pwiocols

(A) conbestmnts train their models againit Dn some number of $imen
and submit 1 P (Y J,w ) ]J,'Ll fo The oovvlpz/w’ﬁom) where
WX is the sef zfﬁwe(ﬁh}z fov the “best" hrained mode] oL feam <
((eavmg anide what “beot" means)  The feams are then rowmked

accoreling 1o the pe ormance of pe (9)2,w.F) onthe fest reh.

(B) vontestants hain their models against Dn some number of fimes

and submit all eftheir models | o sag team ¢ submik uufl‘gh)r

i W?,J }j=l wheve S is the number U‘;Q yvuns. The feamsare

then ranked accordingFo their mecin Jest enor avernged over
their s models.

In Pmdice (A) Is UU‘/\OLJF])eoPle doin compe-ﬁﬁum (becawe (B) reems howd Jo

enforce) and (B) s voughly how 3ood petpers work - people vepory mean and

standavel deviahon of Jeat enor over some number #Mmm& s, agarngt
a standard clatoset.



How cloen model selection ac/uc{//y work 7 Suppose that AlexNe t fopped 1he 2D /12
leaderboard, beating non—cleep learning models, but that when people wenk
home and 1ned +o Prain AlexNeF themselves ﬁ?ejﬁwmc/ hat i jgnem//'mﬁ‘om

ervor wew }ypfcaﬁj worte than their favount-e alfernafive moclel. Clearly they
will pot use AlexNet. They will onclude deep learning cloem't ‘veally”

wovk, and that the AlexNer authow simply 304— mcved/bly /L{C/aj with their
random geeds . This /ovwceduve is clojer o (/3)) (ech,'ng wy To

Hypothesis L+ model selechion in cleep leavn ing pvactice ranRs moclels by

their mean fest set enor, over many mclepenolenf SGD vuns, agou'nsf

fixed haining sefs (e:3. ImageNel, CIFAR).

Subojectfo Fhis hypethesis, we now velate vnodel selection in deep learning
Pmch‘ceb singulavJearming Meovg. Fix a clats of models P(WDL/W) awnd
Priov P(w) (e.a. a pmcvipﬁow +or we‘lah\‘ mgu\amaﬁon). Suppose we vun

sab Mmmj < Hien aga/mf a fixed 7‘;/&1/;’;/:’)9]@L D and oblain ,\Mei\_f]h\‘s
(/\)TKJ - Uo?_ For each wfi\fj\q\’ wWe (DVV\PLA\-Q the +est ervor qﬁorcd-w’r set Tm

2 | (9]=) .
tp = —wTZ koﬂﬁ /)D(n\x,wJ ) (6.1)
) (9,€T,

AN

| S
ond then Lomputle ?ZJ . %J'. The beaf way A oompoznnf) models haiped

on the common datoyet D wouldl be fo ompule the ture 3emamfff61ﬁ0>’) enor
9(¥[%)
o= Eaol " 7 ek wi) ] o)

for Yhe unknown fwre ahif)vibuﬁon) Jo which % s oin empi dcal eafimotte . Anel

iolea(/g one woulel Take S s lawge cuo p ousible, Jo that model selecion

s, according T H&/pDMLM)'J 1, Pet/ﬁ)ymed worng e Fo//owinj 7\4(2”7'7'71
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Sab

Gy () = Ew[ Etw[ log ?MXJ/PMX)M] ] (71)

where he ouficle exPeduﬁon is an aveage over SGD wans, and cowesponcls fo the
emidmldbfw’buﬁma? endpoint £ SUD Jm[m‘rg over W This dishibufion is
wmplexand clepends on imany factows (/b]ﬁal)'saﬁoQ SaD vaviant, Jeavning rake
schedwle, early prP]ﬂj ec. ). We call (71) the SGD Ciibbs jeneml/vqh‘dw e’

and vefev Fo F”‘D(WI Dn ), the probability of wo being an endppint &£ J6D
Ml'm'nj agains? Dn, as the S4D postenor.

Hypothesis T The SGD posterior equals the Bayesian posterior for some
choyce o‘fprior PP (w),

Thisis almost cevtainly fabe ar sfaled, batwe do expect the JGD postevior and
Bayesian posterior 70 be relafed. Asa finf rough approximation,, o get the heory

ot the ground, Hy pothesis IL may be useful even if false. Tt is cevtainly “legr falre”
fhan the hypothesen cumently mnderp;’nnmy most deep learning theoyy /

The Gibbs 3enemlimﬁon ervor andefinecl in (W) Def™ 1.8 ] is

Cﬂ(”) - Ew[ Ewm)L log ?(Y}XJ/P(W)M] } (va)

wheve the oulside axpecjmﬁon IS 1‘6{[1@1/\ with r&)pec}'vlo 1he Bayeﬂiom }oos}eyior.
Bofh CIS&; (n) and Cj (n) ave random vaviables, since ‘Hf]etj are Numben
c\epemdir\g on o mmplecl fmf/lihy set Dn.

O/Qjervm%ﬂ I Under I’iylbofhwu ’—r,ﬂ MOO/@’ fe/ecﬁ'on n cleep /eammg /DmcﬁCE
s performed via The Gibbjjenemﬁmﬁbﬂ ewor aj (”) (/owef/"s better).
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Tt remains fo relade Gy (1) b Bg(n) and the RLET, in ovder #o complefe the
connection be fween the central chavacters of singular /eammg theowy and

deep (eavm'ng Pmcﬁce. Heve /s wwhe ve fhmys stavt 1o 7ef real/y intereating.

TF the huie dishibution is realisable and the othev fundamental conditions hold,
(W, Thm. 6-€ ] ensres the existence of random vaviables BJ*, Qj* such that

ar n —s 00 we have convergence in low

nBj(”)_’? Bj* , V\Gj (») ? C; (?-/)
and. E[ n8sl) | — E[BS] E[nGyt)]— E[G) ], wheve Hrese
expectations cue with reapect o Dn. /37 [W) Thwm 6.10] e hove

E(BI]1="1, E(G3]= Atv (2.2)

where N is fhe /eam/'nj z/oefﬁc/em‘ (3ou may think of this o e KLLT) anc U /s
the ﬂ'ngu/a/ fluckuation, another birational invaviant. This would d/‘n‘:cf‘(y

relofe the gencvalisation ewor Cig(n) wred in deep learming practice Jo the
algebvo-geomepc 7uam’7’¥7'em A, V, viecthe ouymphotic approximation s n—> OO

Elam] = 22 (3.3)

o

However intypical dleep /eamm? problems on large veal-world clatasels the
houe clishibufion will never be realisable (ree § ). Thisis consistent with the
n'noompah'b////y between (£.3) which uould predict a scaling exponenf 1
(e F ij("S] LR ) and the vew sh/onj empivical eviclence (/1) for
a scaling exponent (in#his specific cove) of 009

So whatave we todo ¢ what-dves Watanahe souq in the non—vealisable case ?
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Fot of-all we should noke another obstacle, which isthat RelLU nefwolhs ave
not even analyhic ; however this seems mla}iuelj unimpoviant, ree L. The
Rey theovetical difficultfies in aPp)yjnj singulav leayning theowy appeavto be

Open. problem T1: prove Hypothesis IL, or find 7he nght stalement

Open pwoblep 1.2 : prove that feedforward ReLU netwovha, onvnets
and Transformens satisfy Yhe condifions of- lea vnotbilify [WA ] for some
constomt 720 olepenclmg on The model and hue cfishibution.

o explain, note that the book [W] says vew little about the non-reqalisable cone
except for some scotfered emavis, ¢.q Remoark £.3(1) which is backed by 7he
expevimentrin 9 8.3.1, which fencl$ JU%M} Elcy]= E[EfJ i e non—vealisable
cone. L dovol see shong 3vovmcls for believing This. Jection 7.6 brie fy heak some
WPQC"T of the non-realisable cove , but rot the velation befween Cig (n) and A, V.

The papev [WBIC ] works almost entirely in the nofnecasanly veallsable cove,

ancl we Rnow in Mngememli/y ot T is veladed fo N\ and mow be catimaled
‘oy e WRBIC. Further Bg(h) (denoled G /n [W@/C]) is relatecl fo IE [WAICT).

However the equafrons of stake and “aviveval laws" required fo relate Gy (v)
Jo Rg(n) and +he birational invaviants A, v ave nof Freafed here.

The state of the art for non-realisable models appears 7o be (WA, inwhich we find
ﬁevxemk univenal laws stated undera weakercondition, called “conditions of

lwmalo{liiwj " with wefficient T unoler which we expect formulan such cn

ElCy(M ] = Lo+ o7 (1))

wheve (9 s some constant, presumably velakd o ) V.



Tf o class of modlels is renormalisable then the conditions ot /eamoxla//@ holcl

for 07=1, sothat (1.1) shongly suggests cleep leavning moclels ave pon-renormalisable .

Obsewatin IL 7 ngu/ar/ea mz’nj 7’/})@037 s Jo apply #o deep leayning modlels
in anseful wowy, we need foshow Sl univenal laws apply, and we expect

these models Jo be singular, ron-realisable anc non—renormalisable so that

we ave genuinely in unknown Jerntory from the point-of view of Wakanabes
exidﬁnﬂ work.

Y wecanshow e3- Transformers sahisfy the condihions of /eamqb/};@ for 7,
Then we would have [WA, (18) ]

El[cCq(»)] = L, +F.(0) (io.1)

and the expectation seems Fo be that evenin e non-renormalisable cose that
) = Y% focsome @ I remains Fo c havackie #he geomepic
meoning B 0 In any cane, %hffg;faldf

log ( E[&g(ﬂ)] "’Lo) =~ loj@ ~ ¥ fog(n) (10.2)

wheve we e xpect O + o/epenc/ /nan inhitate way on the 9eomei‘vj o2 e
sel of twie Pammdem. The exponen}“T/‘s much more myseviouwn. It cevfa/nfj
dﬂ}oenols onthe due dishibufion (T =1 if the hue clishibution is vealisa ble )

buf i+ is unclear how sensitive i is o the afomemenﬁoneo/jeome/y (viofing thal
in the realiscible or renovmelisable capep if is)oewf.gcf/j ,’_mem/'/n‘mk) this &dez}

Tn shovt, Open Poblem T.2 goes genuinely beyond The limif of %day'r
sinqulor learming ﬁ)eovj.



I.2 Evidence for powerlaws

Theve is comp@///'ng ex,oew'/wenfa/ evidence for /DOWeV/OlLUJ (10-2) acvoss o vainge of
modalifies and avchiclectures, see [H] and [0AL1]. Tn the former paper
they foand thaf Fhe scaling exponent- T~ prmarily dependec onthe dafaset
and wao suvprisingly nrenafive fo changes 1" archife cture . Tnis woa also
remarked on in [0A1] . Zf an avchrkecture is biy enough fo fi+-he dafa,
and can scale with compute, their hypothesis s that e saling e xponent

is velafively independent of “how”]ou( allscale e Wf}ﬂh/z (e-9. increaed
width vs. deph ). This can O”'ﬂ be hue within o clasc of rﬁ/aﬁv‘c/j simi lar
models (e9. LSTMs clovof have the same exponentas Tramsformera ).

Beating the Power-law: Machine learning researchers often try to improve model accuracy by
changing model architectures trained on a given data set. Their efforts can involve complex trial-and-
error and rely on creativity or epiphany to improve results. Our tests suggest that model architecture
improvements such as model depth only shift learning curves down, but might not improve the
power-law exponent.

A broader question is whether machine learning techniques could improve the power-law learning
curve exponent, or in other words, to improve generalization more quickly as training data grows.
Theory suggests that best case accuracy scaling is with 3, = —0.5 or —1. Thus, for some problem
domains—especially language modeling—the potential accuracy improvements are immense if we
knew ways to improve the power-law exponent.

We have yet to find factors that affect the power-law exponent. To beat the power-law as we increase
data set size, models would need to learn more concepts with successively less data. In other words,
models must successively extract more marginal information from each additional training sample.
This might be difficult without adjustments to the data set. We suggest that future work more deeply
analyze learning curves when using data handling techniques, such as data filtering/augmentation,
few-shot learning, experience replay. and generative adversarial networks.

This (s ﬁom 552 F [H] In shovt, 1hey endorse the view that ML

reseavchers are wol/king hoird fo dhange © (10-2) but al that u(ﬁmm}elj
matffers (see Suton's ”Bj#er/eﬂow)/) s 0

St (6

V)

G
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Af this /Domf wevetuvn o Watanabe's aisevfion in the pVeFa(e fo [W] that
“hnowledge o be discoverec Hom examplen comeaponcls 1o a singu lavity " Consider
this inthe context of the ﬁ//ow/nﬂ jm/oh [H, Fig. 6] whichh isconsislent wifle
(10-2) an an asymphtic cpproximation s n —> 09
> small daly | power~law region [ iveducible enor vecjion
veC\]iOV\ : |
' |
(03 ¥ (l
(2 .)
enevalisafion ‘[ 12
ewor

log( ELGs(]-Lo)

Iocjn

Recall that in the veqlisable case (@ = MV and T=1. Fuffing aside v which is have
H0 undevstand, The more Singular the model (A small) fhe lower the stavhing Poin/‘

F1he power—law line. But this mlﬁma%clj Jeas )mpov‘}unﬁhan 1he slope 0

Considev fuwo moclels ofoeying pDWeV/auU (10.2) with pammef‘ew (O, a')) (69/- §d, 7*0(2/)

ancl lef IUgm he lavge enough that powet/“/aw 5(0{[/7)9 a/pplre/)%o both . The cwssover

point is fhe solufion of

090 — Flogn = log( O+ — (7+87)logn

= 0¥ logn = log( I+ %6—2)



Suppose &0 i Pos/ﬁue (o that the model O+ §0 fookes, sy fon Mepoim'*of
view o WBIC, Fo hawve lower e vidence rua}[m? that WBIC ~ free energy Jo

h)jher WBIC means lower evidence ) anc| lef /Ojn be (awge emowjk Yo be jno
e Powerscqh';’\j mgfv’he. For the mode| (4 §0, T?"Ja/) +o beat (0, 2’)

od’)oyn we need

§0
(9-!03}1

Y (13.1)

which for ’ar_qe data (’O?/H = O) Is vew small relahre o &O [W\)% A << O,

and since this related 4o the “effective number of Paramef‘ew”m the pwie dishibution
i+ doesseem boounded belows and nof many orcfes 079 yy\aﬁm’;hde)wf Mom ij

103{(9’f<§(9)

S\DPE_ -V -&§0

(03(9 (13.2)

Sothe wodel (O, 7) how @'gher evidence By the standavdn o reg ulav stabisties o
the WBIC, but sjnce it “Yearns less d from each new sample it s c(u/‘c/zly praJ/ec/
n ﬂlelavge donLa vzig;'me loj the model /@fo(@/ T#M’) This reems 1o y*e/gvf'/@[/)f’

an even. more pwfound challenge 4o 7he conventional wisdom of statistreal
Jeavning fheow) even #han Watzmabe's work, since it suggesss Maf in the

large data, large wmpufe rgime model selection should be pevformed bosed

on fhe Jealing exponent - (larger is befler ), nof accoveling fo fhe free energy.

sdl
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To quote Tlya Sutskever (chief scienbistof OpenAL) on C/eeP/W’VV?my in Pdeant #4

wih Lex Fadman

61:0%2 “ The Transformer is the most ]mpovbmf advante in neuwval network

avehitechuven in vecent hmlbly

61-32  “The Transformer is successful because it is the simutaneouws
cwombinafion of multiple idecs and if Yyou were fo remove eithe -
idea it wou\d be mudi lens succesful. Io the Trzins former usen
a lo+ ot affention but-atfention exisred for afew years. ..

The Tvansformer~ is deaigned /n such o wey thal i1 vuns
really fastonthe GPU, and thol maken a hwge cumsunt of
diffevence . The second thing js the Transformer s not recumwent

and that is wsaH.tj impo/a%w\% Jo0 becawe ifirvore shallow ancl

. .
Thus ecwierto opfimise .

IV\ S%o/{/ Tvanﬁco/me\d .
(@) Use affention
(0)  Are aveally gn‘_’a/l fit fora GPU

(avehifechure)
( scaling with wmpuk)

(¢)  Not recunent, so ecwier o d)oﬁmee (OP%misaﬁon )

Thisis cleaz/lg a_moderm jnstance afmodehe/ecﬁon ( Transformens > LS TM‘) bat-
only (@) is wn(ewalolj about & ov the WRIC . Clearly (b) is cibout “gething onthe

power law pain” gnd (c) irabouf&/ynoll/m‘cwf acﬁm/[y be/ng able fo £nd a l7ooc{
model within the class.

So wither the ree energy ! Tnthe deep learming eva cloes the WBIC o RLCT even
mallec; excephinsofar as they velate fo scaling exponenfs, compufational sca //‘ny

or ease a#opﬁmi_rofﬁbn /
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stuhshcal leavning problems

\ A \E[a(/@]nu—@
E[G™ ]~ Lo+ 7w T aT
(v=")

T conclwaion, deepleavning vepresents a new phase in Jtatishical JeavningTheowy .
1t 15 organised avound clasres of moclels 7hat ave neither vegular, nor realisable,
or rerormalisable, and the opemﬁoml methods o wmodel selectivon af scale are

arguably vew diffevent o the prevailing sfafistical povadigm .

Obsevvation 1L (e donot care about em‘imaﬁng the learning wefficient of

deep )eaﬂ’lih9 wodlels, because these numbew do not defevmine modelselection.
Howevev we do care about their thevvefical exidence, and singulav leavning
theoy , becawe it is the beat hape al#/gww'ng the exislence of power laws

and inveﬂﬁga‘ﬁhg ndicen of )eamafoi/@z

Nokethat phenomena like fhe 3mcll'eVlJMOUe scale and ofher dynamical propevties

of S6D Paining may be sensitive fo fhe charackevistics of 5 and thua the geomehy.

But if fhe WBIC js not a principal method 7 model relection it cloes Fend o

undermine Hhe argument that algebiaic geomety shoulel be central o deepleavning prache
exceptinsofar an it is necensan fo formulale oand prove the unclevlying theow.



1L . The twie dishibudon is notrea lisable

TF KSR is compach then feecfovunid RelU nefwovks of wicfh m+n and
arloijrra@ depth ave denie in the Jjoa(eofaonﬁnuom funckions K— R™ [HsT].
pf@l/wl,o'}/ then e pue dishibution is realived bije newal netwovk, onviolec(
ourarchitectuve i mf%’c/‘em"/j genemi- However we munt work with o compac f
space W of parameten, and hence netwovks of bounded depth, and with
such a constraint theve is no recvon a priori $o cssume the fwe dishibution

is realisolole in cleep leaning on veal-world datasefs.

For example, wnsider the ‘fmim'na cvou - enbopy loss cuvven for GPT-3 fiom foAz]:
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Figure 4.1: GPT-3 Training Curves We measure model performance during training on a deduplicated validation
split of our training distribution. Though there is some gap between training and validation performance, the gap grows
only minimally with model size and training time, suggesting that most of the gap comes from a difference in difficulty
rather than overfitting.
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