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There are a growing number of remarkable experimental findings in deep learning ,
for which itwould be desirable to have a theoretical explanation .

These include :

• the generalisation puzzle : the fact that deep learning works atall ,
and move over continues to improve overmany orders of magnitude in
datasetsize

,
model size and computational resources , is already striking .

See④ for a more precise discussion .

• Power-law : as observed in CHI
,
(OA 17

,
[01-2] there is experimental

evidence in the contextof Transformer models trained on language tasks

for the following power law [OA 1, Ll - 2) ]

O . 09 5
13

[ (n) = ("/n) no ~ 5.4 x 10 11.1)

where L ( n ) is the test loss for a large model trained with early stopping
on a dataset of size n .

What light can singular learning theory shed on these findings ? Since neural
networks are singular the theory is arguably necessary but in its current state it is

notsufficient .

In this note we address the key obstacles to applying singular learning
theory to modern deep neural networks :

I) the predictive distribution seems irrelevant to deep learning practice
II Rew networks are not analytic
ID The true distribution is not realisable

IV) Estimating the learning coefficient atscale is impractical
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We consider a compact space Wof neural network weights and model class

ply la, w) as in fforw0 . TheBayesianposterior associated to a dataset
Dn ( i. e. a training set ofsize n sampled from the true distribution glylx) 9 (x)) is

derived as follows (W, ft . 3.
I] from Bayes

' rule :

p (WID n )
= P ( Dnl w ) p (w )
-

p( Dn )

n

= In Ylw) IT Phil Xi, w) 12.1 )
.

i =L

where Dn = { Hill ), . - - ,
( Xm Yn) )

,
91W) is the prior and 2n is a normal is ing constant .

*
The predictivedistribution p is

p*( ylx) = ply Ix , Dn) = f p ( y Ix, w ) pl w l Dn) dw (2.2)

Singularity learning theory is largely concerned with the predictive distribution , as for example
the central quantity in the theory is the Bayesiangeneralisation let . Cl - 1) of )

Bg ( n ) : = Dm ( q H p* )

= / qlylx ) 964 log p¥Yyg- dxdy (2.3 )

this is clearly not what people mean by generalisation error in deep learning :

they mean the loss on the test set of a single model ply la , w*) where w*

is obtained by SAD training .

Since we cannot easily sample from the Bayesian

posterior we cannot compute the predictive distribution, andso its performance
appears to be irrelevant to deep learning practice .

So is singular learning theory
talking about a quantity Bg ( n) that is of only theoretical interest ?
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Notquite ! The response of a statistician might be the following argument, taken
from (WB ICI . Note that

Zn = f II ply; loci , w) Y(w ) dw ( 3.1 )

is a function on D= ( Rin x Rout )
"

where the model inputs x EIR
'"

and outputs y c- Rout,
and that ( see (W, Remark 1.103 )

I Zn q (x ) dxdy = fit
,

f ply it sci, w) dyi ) 96) Tcu) dxdw

= f 9 (x ) Tcw) dxdw = I 13.2)

Hence Zn : $→ R
,
called the evidence

, mearginallikelihood or

partition function, may be used in the following way : given a proposed pair
( ply la, w) , 91W) ) we prepare the marginal likelihood 2n and wait for the

sample Dn to arrive . If the
'

model is a "good fit
"

in that 2n evaluated on that

sample is high, then the "evidence " for the pair (ply law) , Ylw ) ) is high .

If 2n is small
,
then 2n 9K) as a distribution on $ is assigning probability

mass to areas thatare not realised by the true distribution, and ply lol, w) , Slu)
is therefore a bad fit .

As Watanabe writes in the introduction to LWBKT, the B-ay.es#rgy

Fn = - log 2n (so 2n = e-
Fn ) ( 3.3)

is a decreasing function of 2n, so in statistical model evaluation you want
to choose models with highevidence and hence low fneenergy.IT .

As detailed in [WI , [WBIC] the free energy is related to the predictive distribution and Bg (n) .

Daniel Murfet
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However
,
here we encounter a gap : nobody force me to adopt model selection

according to the likelihood principle elaborated above . This is a foundational

question of statistics .

II deep learning practitioners compared neural network
architectures by comparing their evidence in the above sense and selecting the one
with highest evidence then singular learning theory would enable comparison
of architectures by e -g .

estimation of RUTS (since these are related to Fn ) .

Perhaps practitioners shoutd do this, but the problem is to explain generalisation
for deep neural networks onlhetermsdicatedbyoeepearning practitioners , not on terms
dictated from the outside by statistical authorities .

So we have a problem : how to relate

" performance on the test set " as a metric of model selection to the evidence Zn ?

Ittfromtestlosstoaibbsgeneralisationerror

Here is how model selection in deep learning actually works .

Let us take

computer vision as an example . The ImageNet dataset was published in 2009
at CVPR [I ]

.

For a detailed history see ( LT . The ImageNet Large Scale

Visual Recognition Challenge ( I L S V RC ) ran from 2010-2017 and it

was the 2012 entry AlexNet in this challenge which is widely credited with

widespread interest in deep learning models .
This represents one of the

most historically decisininsmodeseechoninpmch.atpeople
switching from other kinds ofmodels to deep learning) .

The ILSVRC worked as follows : every year the organisers published a

training set of 1.2 million images (see image - net- org) .
Contestants train

their models on this set Dn
,
n = I

-

2×106
,
and the winner was decided

according to performance on a held -out testset Tm of m= l . S x 104

images , sampled from the same true distribution (images collected from

Flickr and search engines) as the training set .
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In machine learning generalisation (meaning error on the testset ) is the

primary method of model selection [GBC, 5
S

.

2 ]
,
as the example of ILSHRC

demonstrates . Going forward I will use the term "generalisation error " in this
sense and use

"

Bayesian generalisation error " to mean Bg (n) .

Note further than in practice the field of deep learning is organised internally around
datasets such as ImageNet, and competitions such as ILSV RC, with fixed

trainingsets against which multiple contestants train a range of models ,

say p , (yl x ,u) , - . - , Pr ( y l x, w ) .

We could imagine two competition protocols

(A) contestants train their models against Dn some number of times
and submit { Pil Y la, wit ) lie ,

to the competition , where
wit is the set of weights for the

" best " trained model of team i

( leaving aside what " best
"
means )

.

The teams are then ranked

according to the performance of pi (y la,wit) on the test set .

(B) contestants train their models against Dn some number of times
and submit alloftheirmodels , so say team i submits weights
{ wi

,j )j = ,
where s is the number of runs . The teams are

then ranked according to theirmeantestenor averaged over
their s models .

In practice (A ) is what people do in competitions ( because (B) seems hard to
enforce ) and (B) is roughly how good papers work : people report mean and
standard deviation of test error over some number of training runs, against
a standard dataset .
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How does model selection actually work ? Suppose that AlexNet topped the 2012
leaderboard

, beating non - deep learning models, but that when people went

home and tried to train AlexNet themselves they found that its generalisation
error was typically worse than their favourite alternative model . Clearly they
will not use AlexNet

. They will conclude deep learning doesn't "really
"

work
,
and that the AlexNet authors simply got incredibly lucky

.

with their

random seeds
.
This procedure is closer to (B ), leading us to

Hypothesis : model selection in deep learning practice ranks models by
their mean test set error, over many independent SGD runs, against
fixed training sets ( e - g . ImageNet, CI FAR ) .

Subject to this hypothesis, we now relate model selection in deep learning
practice to singular learning theory .

Fix a class of models ply lol , w ) and

prior Y(w) ( e.g. a prescription for weight regulars ation ) . Suppose we run
SAD training s times against a fixed training set Dn and obtain weights
wit
,

. . .

,
WE

.

For each weight we compute the test error for a test set Tm

Ej :-. ImI log 91 "
" )
/p ( y la, WE ) CG . D

( y
, a) C- Tm

x

and then compute St Ej tj . The best way of comparing models trained
on the common dataset Dn would be to compute the true generalisation error

tj : = E
µ, ×, I log

9 "" "/pl y l X, wj* ) ] 16.2 )

for the unknown true distribution , to which Ej is an empirical estimate . And

ideally one would take s as large as possible, so that model selection
is
, according to Hypothesis I, performed using the following quantity :
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SAD SAD

Gg (n) : = Ew ( Ely
, × , ( log 941×4ply , × , w ) ) ) call

where the outside expectation is an average over SAD runs, and corresponds to the

empirical distribution of endpoints of SUD training over W .

This distribution is

complex and depends on many factors (initial isa lion, SAD variant, learning rate

schedule
, early stopping etc . J

.
We call ( 7. 1) the SaDgeneralisations

and refer to p
sad (w l Dn) , the probability of w being an endpoint of SGD

training against Dn, as the ID poster .

Hypothesis the SGD posterior equals the Bayesian posterior for some
choice of prior TsaDfw) .

This is almost certainly false as stated, butwe do expect the sad posterior and

Bayesian posterior to be related . Asa first rough approximation, toget the theory
off the ground , Hypothesis It may be useful even if false .

It is certainly " less false
"

than the hypotheses currently underpinning most deep learning theory !

The Gibbs generalisation as defined in Cw, Def
"

I - 8 ] is

Gg (n) : = Ew ( Ely
, × , ( log 941×4ply , × , w ) ) ) ( 7.2)

where the outside expectation is taken with respect to the Bayesian posterior .
Both as

a

} ( n ) and Gg ( n ) are random variables , since they are numbers
depending on a sampled training set Dn .

Observation Under hypotheses I, I model selection in deep learning practice
is performed via the Gibbsgeneralisation error Gg ( n ) ( lower is better ) .

Daniel Murfet
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It remains to relate Gg (n) to Bg (n ) and the RL CT, in order to complete the

connection between the central characters of singular learning theory and

deep learning practice .
Here is where things startto get really interesting .

Ifthetmedistributionisrealisable and the other fundamental conditions hold,
[W, thin .

6.8 ) ensures the existence of random variables Bg*, Ggt such that
as n → as we have convergence in law

n Bg ( n )→ Bgt
,

n Gg Cn )→ agt (8.1 )

and Ef n Bg (n ) )→ E[BIT, El n Gg (n ) )→ IE (Gg
't

]
,
where these

expectations are with respect to Dn . By (w, thm 6. to] we have

El Bj ] = X ,
E (Gif ) = At V (8. 2)

where X is the learning coefficient ( you may think of this as the RUT) and V is

the singular fluctuation, another birational invariant . This would directly
relate the generalisation error Gg (n ) used in deep learning practice to the
algebra - geometric quantities 7

,
V
,
via the asymptotic approximation as n→ D

El agin ) ) =
¥ ( 8.3)
n

However in typical deep learning problems on large real-world datasets the

tmedistributionwillneverbereah.sc# (see 5 It) . This is consistent with the

incompatibility between 18.3 ) which would predict a scaling exponent 1
( i - e .
E ( agent ] L 'T ) and the very strong empirical evidence l l. I ) for

a scaling exponent (in this specific case) of O - 095
.

So whatare we to do ? Whatdoes Watanabe say in the non - real isable case
?
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First of all we should note another obstacle, which is that Rew networks are

not even analytic ; however this seems relatively unimportant, see II. The

key theoretical difficulties in applying singular learning theory appear to be

Qpen-pwblemI.tt :

pure Hypothesis It, or find the right statement

ofen-pwblemI.fi prove that feedforward ReLV networks, con v nets

and Transformers satisfy the conditions of learnability (WA ) for some

constant 820 depending on the model and the distribution .

To explain , note that the book (W ] says very little about the non - realisable case

except forsome scattered remarks, e.g. Remark 8.3 ( t ) which is backed by the

experiments in 98.3 . I, which tend to suggest Elaf I = El Bgt ] in the non -realisable
case .

I do not see strong grounds for believing this .

Section 7.6 briefly treats some

aspects of the non- realisable case , but not the relation between Gg Ln ) and 7, V.

Thepaper (WBK] works almost entirely in the notnecessarily real is able case,
and we know in thisgenerality that Fn is related to X and may be estimated
by the W BK . Further Bg (n ) (denoted 9 in [WBK] ) is related to E (WA ICT .

However the equations ofstate and
"universal laws " required to relate Gg Ln)

to Bg ( n ) and the birational invariants X, u are not treated there .

The state of the art for non -realisable models appears to be [WAT , in which we find

general universal laws stated undera weakercondition, called "conditions of
learnability

" with coefficient 8
,
under which we expect formulas such as

El Gg ( n ) ) = Lot OF 19.1 )

where O is some constant, presumably related to X, V.
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If a class of models is re normal isable then the conditions of learnability hold
for 8=1, so that Cl . I ) strongly suggests deep learning models arenb1e .

Observation if singular learning theory is to apply to deep learning models
in a useful way, we need toshow the universal laws apply, and we expect
these models to be singular, niab and non-renorma-liab.ie so that

we are genuinely in unknown territory from the point of view of Watanabe 's

existing work .

If we can show e. g Transformers satisfy the conditions of learnability for 8,
then we would have (WA, ( 18) ]

E (Gg ( n ) ) = Lot Fn 'co) (lo .
I )

and the expectation seems to be that even in the non- renormal is able case that

Filo) = 01no forsome O . It remains to characterise the geometric
meaning of d . In any case, this yields

log ( E ( Gg (n) ] - Lo ) = log O - T log (n) Clo
. 2)

-

log scale test loss

where we expect 0 to depend in an intricate way on the geometry of the
set of true parameters . The exponentT is much more mysterious .

It certainly
depends on the true distribution 18=1 if the true distribution is realisable )
but it is unclear how sensitive it is to the aforementioned geometry (noting that
in the real isable or re normalisable cases it is perfectly i.nsens to this structure )

In short
, Open Problem I . 2 goes genuinely beyond the limits of today 's

singular learning theory .
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I. 2 Evidence for powerlaws
-

There is compelling experimental evidence for power laws 110 -2) across a range of

modalities and architectures, see [HI and [0 A 17 .

In the former paper

they found that the scaling exponent 8primarily depended on the dataset
and was surprisingly insensitive to changes in

-
'architecture

.
This was also

remarked on in [OAI] . If an architecture is big enough to fitthe data,
and can scale with compute, their hypothesis is that the scaling exponent
is relatively independent of "how

"

you allocate the weights (e.g. increased
width vs . depth ) . This can only be true within a class of relatively similar
models (e.g .

LSTMs do not have the same exponent as Transformers ) .

This is from 55.
2 of lHT .

In short
, they endorse the view that ML

researchers are working hard to change 0 in Clo . 2) but all that ultimately
matters ( see Sutton 's " Bitter lesson " ) is 8
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At this point we return to Watanabe 's assertion in the preface to CW] that
" knowledge to be discovered from examples corresponds to a singularity

"

.

Consider

this in the context of the following graph (H , Fig . 6) which is consistent with
110.2) as an asymptotic approximation as n → D

^
small data 1 power -law region 1 irreducible error region
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l l
-

logo - - -
-
-

i l

l l

generalisation ) 'i% "" '

log ( EIGHT - Lo) l l
l l

l l

l &

l X
- -
- - - - y - - -

- - - - - - - - - -
- - - -

l
- - - - - - -

#
login

Recall that in the realisable case O -- Itv and 8=1 . Putting aside v which is hard
to understand, the more singular the model ( A small) the lower the starting point
ofthe power- law line .

But this ultimately less important than the slope T.

Consider two models obeying power laws 110.2) with parameters (0,8) , (01-80,81-88)
and let logn be large enough that power -law scaling applies to both .

The crossover

point is the solution of

logo - 810g n = log (Ots - (Ot fr) login

⇒ 88 login = log ( It to) 112.2)

:
. login = IT log ( It too) = 08¥ for 8% small .
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Suppose 80 is positive (so that the model Ot 80 looks, say from the point of
view of WBK, to have towerevidence recalling that WBK ~ free energy so

higher WBK means lower evidence) and let log n be large enough to be in
the power scaling regime .

For the model (Ot 80, rt88) to beat ( O, 2)

attogn we need

gy >
K

( 13.1 )O - logn

which for large data ( login→ O) is very small relative to 80 (unless OKO,

and since this related to the "effective numberof parameters
"

in the true distribution

it doesseem bounded below and notmany orders of magnitude less than 1)

log lots o)

slope - T- gy

logo ( 13 -2)stop

logn

so the model (O, t) has heigherevidence by the standards of regular statistics or
the WBK, but since it

"learns less " from each new sample itis quickly surpassed
in the large data regime by the model (Otto, Ttft) . This seems to represent
an even more profound challenge to the conventional wisdom of statistical

learning theory even than Watanabe 's work, since it suggests that in the

targedata, Larewteegimemodelsdectionshouldbeperfovmedbasedon-heaing.eeponent ( larger is better), not according to the free energy .
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To quote Ilya Sutskever (chief scientistof OpenAI ) , on deep learning in Podcast # 94
with Lex Fridman

61 : 03
" The Transformer is the most important advance in, neural network
architectures in recent history

61 '

- 32 " The Transformer is successful because it is the simultaneous

combination of multiple ideas and if you were to remove either

idea it would be much less successful . So the Transformer uses

a lot of attention butattention existed for a few years . . .

The Transformer is designed in such a way that it ruins

oeGPd,
and that makes a huge amount of

difference .
The second thing is the Transformer is notrecunent

and that is really important too because itis more shallow and

thuseaspe .

"

In short
,
Transformers :

(a) Use attention (architecture)

(b) Are a really great fit fora GPU ( scaling with compute )

(c) Not recurrent
,
so easier to optimise ( optimisation )

this is clearly a modern instance ofmodel selection ( Transformers > LSTMs ) but

only (a) is conceivably about O or the WBIC . Clearly (b) is about "getting on the

power law train
"
and (c) is about dynamics of actually being able to find a good

model within the class
.

Sowingy ? In the deep learning era does the WBK or RLCTeven
matter

, exceptinsofar as they relate to scaling exponents, computational scaling
or ease of optimisation ?
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statistical learning problems

venomall'sable

n n

l l
E [ ages ] a Lot In E [ agln) ) a Lot OF

( t = i )

In conclusion
, deep learning represents a new phase in statistical learning theory .

It is organised around classes of models that are neither regular, nor realisable,
or renormal isable

,
and the operational methodsof model selection at scale are

arguably very different from the prevailing statistical paradigm .

Observation we donot care about estimating the learning coefficient of
deep learning models, because these numbers do not determine model selection .

However we do care about their theoretical existence
,
and singular learning

theory, because it is the best hope of proving the existence of power laws
and investigating incarnateI.

Note that phenomena like the gradient noise scale and other dynamical properties
of SAD training may be sensitive to the characteristics of 3 and thus the geometry .

But if the WB IC is not a principal method of model selection it does tend to

undermine the argument that algebraic geometry should be central to deep learning practice ,
except insofar as it is necessary to formulate and prove the underlying theory .



HI.tn#edislnbuionisnotRalisasle

If K E R
"

is compact then feedforward Rew networks of width mth and

arbitrary depth are dense in the space of continuous functions K→ Rm CH SI
.

Arguably then the true distribution is realised by some neural network, provided
ourarchitecture is sufficiently general - However we must workwith a compact

space W of parameters, and hence networks of bounded depth, and with
such a constraint there is no reason a priori to assume the true distribution

is real isable in deep learning on real -world datasets .

For example, consider the training cross - entropy loss curves for aPT
- 3 from [0 AZ) :
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