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b) The scaling hypotheses in themselves carry no information on the 
rescaling parameters p and q and therefore none ofthe results (13.1.2-
5) and (13.1.12-13) can be used to compute the individual values of 
the critical exponents. 

The renormalization program proposes to give a more fundamental expla-
nation for the scaling hypotheses, one that would alleviate these criticisms. 

13.2 The Renormalization Program 

To present the basic idea in a simple form, we chose two didactic models 
where the program can be exactly implemented. The first is again the one-
dimensional Ising model, for which the result is evidently trivial, but never-
theless instructive; see in particular the renormalization basic step (13.2.8), 
and its consequence (13.2.9). The second illustration is provided by the Dyson 
hierarchical model; here, the program requires serious analytic work, the main 
stages centering around: the basic iteration formula, (13.2.19); the discussion 
summarized in Fig. 13.3; and the values of the critical indices (13.2.40). Ac-
cordingly, the treatment of the model is broken up into three subsections: 
dofinitions (scc Fig. 13.2), critical fixcd points, and critical cxponcnts. 

Consider now the class of systems of the Ising-type, defined on a finite, 
d-dimensional lattice, with periodic boundary conditions, A = (ZN)d; for 
convenience, we assume that N = Mm).. with >. = 2", + 1, M, m and '" 
positive integers, and m large. On each site k of this lattice sits a classical 
"spin" O"k with possible values ±1. Hence a configuration of this system is 
a function 0" : k E A ---+ O"k E {-I, + I} so that the state-space of the system, 
i.e. the collection of all such configurations, is {-I, + l}A . The Hamiltonian 
of any of these systems is taken to be of the form: 

H: 0" E {-I, +l}A ---+ H(O") = L KAO"A 

A 

(13.2.1) 

with A running over P(A), the collection of all subsets of A; and O"A = 
I1kEA O"k ; KA is the strength of the interaction between the spins in A. 

For convenience, we assume that the natural temperature f3 = l/kBoltzT 
as been incorporated in the definition of K. For instance, for the ordinary 
Ising Hamiltonian - discussed in Sects. 12.1-2 for d = 1,2, - the only KA =I- 0 
are K{k} = -f3B, the external magnetic field, and K{j,k} = -f3J when j and 
k are nearest neighbors. Hence to specifiy a Hamiltonian in the class (13.2.1) 
is to specify the function K : A E P(A) ---+ KA E R. 

Let us now divide the original lattice in cells over which we take average. 
We thus introduce the sublattice A' = (>'ZNI )d - with N ' = >.-1 N = M(m-1» .. 
- and its complement A" = {k E A I k t/:- A'}. We then denote by 0"' [resp. 0""] 
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Fig. 13.1. Decimation and majority rules: Sites marked. belong to A' ; sites 
marked 0 belong to A". Decimation retains only •. The majority rule attributes to 
• a value determined by the surrounding 0 . Lines mark the boundaries of blocks 

the restriction of the configuration a to A' [resp. A" ] , i.e. a' : k' E A' ---+ 
a' k' = ak' E { -1, +1} ; and similarly for a" . 

The first step of the method known as renormalization by decimation (see 
Fig. 13.1) is to rewrite the partition function in the form: 

Z = La e-H(a) = La' e-H(a') 

with 
e-H(u') = La" e-H(u'Uu") 

which defines the coarse-grained Hamiltonian 

H(a') = L K'A' a'A' 
A' 

} 

where A' runs over the subsets of A' ; and a' A' = TIk'EA' a' k' . 

(13.2.2) 

(13.2.3) 

On the space of the coupling constants K , this defines a map n[ K] = K' . 
One iterates this procedure to produce successive Hamiltonians H(n) with 
coupling constants K(n) , and the corresponding sequence of maps inn In E 

Z+} is called a renormalization semigroup, on account of the fact that the 
composition nn1 0 nn2 = nn1 +n2 , defined for any pair of non-negative inte-
gers (nl,n2) , is an associative binary relation, with unit no = Id. 

Lest the above looks too abstract, consider the very particular case where 
the initial Hamiltonian H is the one-dimensional Ising Hamiltonian with 
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nearest-neighbor interactions - K{j,k} = -(3J when j and k are nearest 
neighbors, with all the other coupling constants being equal to zero, includ-
ing the external magnetic field K{k} = -(3B = ° : 

and thus 

H(O") = -K L O"kO"k+l 

kEA 

e-H(cr) = II eKcrkcrk+l = II V(O"k, O"k+d 

kEA kEA 

(13.2.4) 

(13.2.5) 

where the transfer matrix V is rewritten in the form - compare with (12.1.7) 
- with the notation K = tanh[(3J] : 

_ (eK e-K ) V - -K K e e 
( l+K 

coshK 1- K l+K 
(13.2.6) 

Hence upon summing over the configurations attached to the sites that belong 
to A" we obtain: 

(13.2.7) 

which we can rewrite 

with 
e-H(cr') = Lcr" e-H(cr'ucr") ) 

H(O"') = -K' Lk'EA' + C 

K' = (3J' = tanh-1 {[tanh((3J)V} i.e. K' = K).. 

(13.2.8) 
and 

where the constant C does not affect the computation of expectation values; 
it only betrays the presence of the multiplicative constant 2)..-1 (cosh K) .. in 
(13.2.7) rather than coshK' , and we can ignore it here. 

We know - see Sect. 12.1 - that, even in the thermodynamical limit, 
the 1-d Ising model with nearest-neighbor interaction does not exhibit 
a phase transition at any finite temperature. The renormalization semi-
group confirms this. Indeed, for this particular model, the map n : K E 

[0,1] ---+ n[K] = K' E [0,1] has exactly two fixed points: ° and 1, with ° :s; K < 1 1= limn-+oo Rn[K] = O. 
Upon recalling the notation K = tanh(3J, we see that the fixed point {O} 

corresponds to the high temperature limit T = CXJ , where the system behaves 
as if there were no interaction; and the fixed point {I} corresponds to the low 
temperature limit T = 0, where everything is frozen: either all the spins are 
up, or all are down. Let us briefly examine what the renormalization analysis 
has to add. 
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We note: (i) the lucky fact that the coarse-grained Hamiltonian (13.2.8) 
and the original Hamiltonian (13.2.4) both are Ising model with nearest-
neighbor interactions only; (ii) the coupling constants of these two systems 
are related by the third relation in (13.2.8); and (iii) A is the ratio of the 
lattice spacing in the coarse-grained system over the lattice spacing of the 
original system. We then conclude that the correlation length satisfies: 

= i.e. ex: [lntanhK]-l (13.2.9) 

in agreement with (12.1.18) as T --70; for finite temperatures, the correlation 
decays exponentially fast, but the rate of decay slows down to 0 as e-!-3J 

when the temperature approaches the absolute zero. 
While not bringing new results yet, the approach is certainly more direct 

than that followed in Sect. 12.1. 
Note that one can view renormalization by decimation as a selection pro-

cess. Around each site k' = k A in the sublattice A' , let us consider the box 
Bk' of length (A - 1) centered on this site - recall that we chose A to be odd, 
say, A = 2", + 1 , so that B k' == {k E A I k' - '" :::; k :::; k' + "'} . Note that we 
wrote this in one dimension only; if the lattice has more dimensions, these 
inequalities are required to hold for each components of the position vectors. 

The idea of a representative selection process is now this: when the system 
is close to its critical point, the correlation length is much larger than lattice 
spacing (chosen here to be a = 1); to focus on the behavior of the system in 
intermediate scales, one chooses A such that 1 « A « . The spins inside the 
same box Bk' are therefore expected to be strongly correlated, and O"k' can 
therefore be considered as a "representative" of the box Bk' in the middle of 
which it sits. This description suggests immediately other possible selection 
processes. For instance, a more "democratic" selection would be the majority 
rule by which one defines the spin variable O"k' the values ±1 of which are 
determined by the condition O"k' . '£kEBkl O"k > 0 : O"k' is + 1 [resp. -1] when 
the majority of the spins in the box point up [resp. down]; this assignment is 
unambiguous, since we have assumed in effect that each box contains an odd 
number of sites, irrespectively of the dimensionality of the system. Still other 
assignments are possible, mostly chosen for computational convenience when 
searching for fixed points of the corresponding renormalization semigroup. 

Yet another way to implement the idea of the renormalization method 
is to make it appear as a deviation from the Gaussian distribution of the 
central limit theorem - see Sect. 5.2 - when the random variables considered 
are not independent. Following [Collet and Eckmann, 1978], we present this 
approach in a case where it is implement able without approximation. 

Definition of the hierarchical model. The original model was proposed by 
[Dyson, 1969]. For every positive integer N, let AN = {I, 2, 3, ... ,2N} and 
{-l,+l}AN = {O": k E AN --7O"k E {-1,+1}}. For each integer p with 
o :::; p :::; N, consider the partition of AN into 2N -p blocks Bp.r consisting of 
2P consecutive sites: 
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Bp,r = {k E AN I (r - 1) 2P + 1::; k::; r2P } ; r = 1,2"," 2N - p . (13.2.lO) 

The Hamiltonian then is defined as: 

(13.2.11) 

where the coupling constants bp are positive numbers, defined for all non-
negative integers p, and satisfying the condition that the following sum con-
verge,,: 

N N 

lim EN = L 2P - 1 EN(p) 
N--+oo 

with EN(p) = L 2-2q bq (13.2.12) 
p=l q=p 

To see the reason for the appelation "hierarchical" and the convergence 
condition, note that, for all integers p with 1 ::; p ::; N : the block Bp,r 
of length 2P is the disjoint union of two consecutive blocks of length 2P - 1 , 

namely Bp - 1 ,2r-l and B p - 1 ,2r . Consequently 

(2:kEB p ,r CTk)2 = ( 2:kEBp - 1 ,2r-l CTk)2 + (2: 1E B p - 1 ,2r CTz)2 } 

+ 2:(k,I)EBp _ 1 ,2r_l XBp - 1 ,2r CTkCTl 

(13.2.13) 

Since the first and the second terms of the RHS are of the same form as the 
LHS, except for the fact that they involve blocks of length 2P - 1 instead of 
a block of length 2P , the Hamiltonian (13.2.11) can be rewritten as 

N 

HAN = L Vp L CTkCTl 

p=l (k,I)EVp 

(13.2.14) 

where Vp is the set of all pairs of sites (k, l) for which k and l belong to the 
"arne block of length 2P but to different blocks of length 2P - 1 . Hence the 
Hamiltonian can be viewed as the sum of interactions between consecutive 
blocks, at all possible levels p. This is illustrated in Fig. 13.2. Note then 
that for any pair of sites (k, l) E A x A there is a smallest integer p(k, l) 
such that k and l belong to the same block. With this picture in mind, 
one "ees with [Dyson, 1969], that EN - in (13.2.12) - is the sum of the 
interactions coupling an arbitrary, but fixed, spin to all the others. Hence 
condition (13.2.12) expresses that this bound remains finite so that one can 
define an infinite hierarchical model, as N --+ 00. Note also that the condition 
is satisfied for the particular choices bp = cP with 1 < c < 2 . 

The primary concern in [Dyson, 1969] was to use the model to explore 
the effect of interactions, decaying slowly with distance, on the occurrence of 
long-range order in one-dimension - see the closing remarks in Sect. 12.1. 
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(a) 

1 2 3 4 5 6 789 10 11 12 13 14 15 16 

(b) 

6 c e8 14e c 16 

5 c e7 13e c 15 

2 c e4 lOe c 12 

1 c e3 ge c 11 

Fig. 13.2a,b. The one-dimensional hierarchical model. The successive blocks con-
taining the site {I} are shown: BO,l = {l},Bl ,l = {1,2},B2 ,l = {1,2,3,4}, 
B 3 ,l = {I, 2" .. , 7}, B 4 ,l = {I, 2"", 16} with the interactions binding each block 
indicated by a thin line. 

The hierarchical model was re-invented by [Baker, Jr., 1972] for the ex-
plicit purpose of exhibiting an exactly solvable model to which the [Wilson, 
1971] renormalization program did apply. The analysis of a class of models of 
this type was reworked with great mathematical care by [Bleher and Sinai, 
1975, Gallavotti and Knops, 1975, Collet and Eckmann, 1978]. 

One has again a one-dimensional array AN of 2N sites, but the "spins" are 
assumed to take continuous rather than discrete values. The Hamiltonian is 
now: 

(13.2.15) 

where the value ofthe constant c and the form of the function f are still to be 
adjusted to ensure thermodynamical stability, in particular the existence of 
the thermodynamical limit. The hierarchical structure of the Hamiltonian is 
captured by performing in the Hamiltonian H{O,AN+d the change of variables 
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Tr = (0"2r-1 + 0"2r) 

Vr = (0"2r-1 - 0"2r) 
} with r E AN and Ac = 2 (13.2.16) 

where the variable Tr is proportional to the sum of the spins O"k in the block 
B 1,r of length 2 in the array AN +1 ; the value of the scaling constant Ac is 
chosen to ensure that (13.2.17) and (13.2.19) below are satisfied. We have: 

(13.2.17) 

where the variables Vk do not appear. The scalar counter-term in the full 
Hamiltonian HU,AN+d(O") - see (13.2.15) - contains sums offunctions of the 
one-spin variables O"k and requires more focussed attention. For this purpose, 
consider only the equilibrium expectation 

of the macroscopic variables of the form A(LkEAN O"k) , where A is any mea-
surable function, (3 denotes the natural temperature and P is the measure 
corresponding to the Hamiltonian HU,AN } ; i.e. 

P{(3,f,AN } (S) = } 
Z{(3,!,AN } -1 J ... J dO"l ... d0"2N e-(3HN,/(a) 6(S - O"k) . (13.2.18) 

with Z{(3,!,AN} = J ... J dO"l ... d0"2N e-(3HN,/(T) 

Upon using the definition (13.2.15) and the recursion relation (13.2.17), one 
obtains that the probability distribution (13.2.18) satisfies the renormalized 
scaling property: 

(a) P{(3,!,AN+d(S) = } 
where 

(b) N(3,c[fl(T) = . (13.2.19) 
J 

The most remarkable feature of the exact relation (13.2.19) implies that the 
Hamiltonian remains in the class defined by (13.2.15) and only involves tuning 
the one-spin function - f being replaced by N(3,c[fl - appearing in the scalar 
counter-term. 

Remark: A motivating analogy with the central limit theorem. To bring up 
the sense in which the renormalization program can be viewed as a variation 
on the theme of the central limit theorem - Sect. 5.4 - suppose for an instant 
that the spin variables of our array of 2N sites are independent and identically 
distributed, with one-spin density (!, with mean m ==< 0" >1) and variance 

1 

v == < (0" - m)2 >1)2.11 Then (13.2.18) is replaced by 
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(13.2.20) 

and the central limit theorem asserts that the following limit exists (in the 
weak sense of convergence of expectation values): 

(13.2.21 ) 

and is equal to the Gaussian probability distribution 

(13.2.22) 

Note that (13.2.20) can be rewritten as the 2N -fold convolution product 

(13.2.23) 

where for any two Ll-functions f and 9 the Ll-function f * 9 is defined by: 

/ 00 /00 8 8 f*g(8)= Uf(8-U)g(u) = dvf(-+v)g(--v) -00 -00 2 2 

In particular, when the one-spin distribution is Gaussian - as in (13.2,22) -
the probability distribution for the array AN is again a Gaussian, and does 
satisfy the central scaling property: 

(13.2.24) 

Compare this to (13.2.19); the comparison is pursued later on. In general, 
since the convolution product is associative, (13.2.23) entails 

(13.2.25) 

or equivalently, for any .>. > 0 : 

R{O,AN}(S) = P{O,AN} (.>.NS) F 
(13.2.26) 

R{O,AN+r}(S) = .>.N J du R{O,AN + u) R{O,AN - u). 

The choice.>. = 2! corresponds to the scaling that appears in the central limit 
theorem; hence (13.2.24) and (13.2.26) - with'>' = 2! - can be viewed as re-
cursion relations for which the limiting Gaussian distribution P{O,AN }(2!N S) 
is a fixed point. 
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For any model in which the spins do interact, and are thus not independent 
random variables, the central limit theorem cannot be expected to hold in 
the form just given. It is therefore remarkable that, for the hierarchical model 
(13.2.15), the following simple generalization of (13.2.26) holds: 

R{{3,J,AN} (S) == P{{3,J,AN} (>.J/ S) 1= ) 

R{{3,J,AN+d(S) = aN e1{3S2 x 

A;; J du R{{3,J,AN} + u) R{{3,J,AN} - u) 

(13.2.27) 

where Ac is the scaling defined in (13.2.16). Equivalently, (13.2.27) can be 
rewritten as: 

. (13.2.28) 

Hence the only difference between the recursion relation (13.2.27) - valid 
for the hierarchical model - and the relation (13.2.26) - valid for the case 
where the spin variables are independent - is the factor D(S) == e1{3S2; 
aN only ensures that the LHS of (13.2.28) is still a probability distribution 
- specifically that its integral is still equal to 1. In particular, when the 
coupling constant c = 0, = 0, and (13.2.28) reduces to (13.2.25) as it 
should. Moreover, in the high temperature limit (3 -+ 0 the factor in D(S) 
disappears confirming that the hierarchical model behaves properly: in this 
limit the thermal agitation prevails on the mechanical interaction, and the 
spins become independent of one another. Furthermore, as already pointed 
out, when f is a fixed point of the map f -+ N{3,c[fl in (13.2.19b), the scaling 
relation (13.2.19a) is analogous to (13.2.24). 

The analogy with the central limit theorem therefore suggests that in the 
study of the asymptotic behavior of the hierarchical model one should expect 
(13.2.21) to be replaced by 

where we used the substitutions IAI = 2N , and Ac = 2c-1 as defined in 
(13.2.16). When the limit (13.2.29) exists and is not Gaussian, it is called 
critical. 

Critical fixed points for the hierarchical model. To complete the illustration of 
the renormalization method for the case of the hierarchical model, the exis-
tence and properties of fixed points have to be established. For this purpose, 
it is useful to replace the renormalization operator N{3,c - see (13.2.19b) - by 
an equivalent, but more manageable operator. Consider indeed the following 
two bijective transformations: 
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Ef3 : f -+ ff3 and Sf3 -1 : ff3 -+ <p defined by 

ff3(s) = e-f3f (s) and I 
One verifies that f is a fixed point of Nf3 ,c if and only if ff3 satisfies 

(13.2.30) 

(13.2.31) 

and this happens if and only if <p is a fixed point of the new operator Nc 
defined by: 

Nc[<p](s) = -1 due-u <p( -AcS + u) <p( -AcS - u) 1 J 2 1 1 
11"2 2 2 

(13.2.32) 

Two features of this operator govern the following discussion. First, the op-
erator Nc depends only on the strength e of the interactions, and not on the 
temperature f3. The latter is reintroduced into the picture by the inverse of 
the transformations (13.2.30), but only as a deviation from a critical temper-
ature f3c determined bye. Second, however, Nc still inherits - through the 
convolution (13.2.31) - the non-linear character of the original renormaliza-
tion operator N f3 ,c. Clearly the constant function <p(s) = 1 is a fixed point 
of Nc for every e in the range of interest to us, namely 1 < e < 2, which 
are conditions that come in handy when one established the existence of the 
thermodynamical limit [e < 21 and of a phase transition [e> 11. 

For orientation purposes, let us tentatively limit our attention to the linear 
approximation 'DNc(<p) of Nc around a solution <p of Nc[<p] = <p i.e. Ncl<p + 
8<p] <p+'DNc(rp)[8rp]. Mathematically, 'DNc(<p) is the tangent map to Nc at 
rp. Analytically, one verifies that 'DNc(<p) [8rp](s) = 211"-! J due-u2 rp(!AcS + 
u) (8rp)(pcs - u); thus, in particular, for the solution <p = 1 of Nc[<p] = <p : 

(13.2.33) 

It is then straightforward to verify that for every n E Z+: 

(13.2.34) 

where the eigenfunctions are the normalized Hermite polynomials 

and where the eigenvalues are = 2e-!n. In particular, for all values of 
e : = 2 and = 2C! = Ac , where Ac is precisely the scaling factor 
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introduced in (13.2.16). Since In E Z+} is an orthonormal basis in the 
Hilbert space He == £2(R, d/Le) with d/Le (8) = e(1-e- 1)s2 d8, 'DNe(1) can be 
viewed as a self-adjoint operator, mapping He into itself, and with simple 
discrete spectrum 

(13.2.35) 

For any c E (1,2), the spectrum (13.2.35) contains finitely many eigenval-
ues larger than 1 and infinitely many eigenvalues smaller than 1, 'P = 1 is 
hyperbolic, with finitely many unstable directions and infinitely many stable 
directions. 

In addition, there may exist one zero eigenvalue: this happens exactly 
when the coupling constant c hits one of the special values {2 * I n = 3,4, ... } . 
For instance, if c = 2 , there are n unstable directions, corresponding to 
2 = > > ... > > 1, while = 1, and \j k > n : < 1. 

The analysis of 'DNe(1) therefore sugests that, at a particular value of 
the coupling constant c for which one of the vanishes, a new solution 
of Ne['P] = 'P may bifurcate away from the trivial fixed point 'P = 1. The 
proof that this really happens - namely that such a solution exists and has 
smooth analytic properties - requires some hard analysis that goes beyond 
the elementary perturbation theory of bifurcations; this analysis is provided 
in [Collet and Eckmann, 1978]. We summarize their results. 

First of all, a disclaimer: the above conjecture is borne out only when n 
is even, i.e. for n = 2k and thus c E {2 t I k = 2,3, ... }. The first putative 
point where a new solution may branch off is therefore n = 4 i.e. c = ; 
since it turns out to be typical, we can lighten the notation, and restrict our 
attention to this branching point. 

Second, the existence and uniqueness of a non-trivial fixed point can be 
proven only in a finite, but small, neighborhood of our branching point, and 
the notation c(c:) = reminds us of this. We denote by 'Po the trivial 
fixed point 'Po = 1 . 

The main result is that for all c: positive and sufficiently small, there exists 
a function 'Pc: : s E R -+ 'Pc:(s) E R smooth in c: and 8, such that Ne(c:) ['Pc:] = 
'Pc: and 'Pc: # 'Po, with 'Pc: branching off smoothly from 'Po at c(O) = . 

• 1 IJ 4 'Pc: decreases hke e- 2 C: S as lsi -+ (Xl, for some constant e E (0,1) the 
precise value of which is known, but not essential beyond the central claim, 
namely that 'Pc: is critical. Upon recalling the defining relations (13.2.30), the 
physicist as well as the probabilist will be interested in noting with [Collet 
and Eckmann, 1978] that the distribution density 'Pc: is not infinitely 
divisible; thus it cannot be written as a limit of sums of indenpendent random 
variables - for the definition and properties of infinitely divisible distributions 
in the context of the techniques associated to the central limit theorem, the 
Reader may consult [Feller, 1968, 1971]. 

Pursuing the analysis one step further, one can show that the spectrum 
of 'DNe(c:) (1) changes controllably little when one passes from the trivial 



446 13. Scaling and Renormalization 

solution cP = 1 with c = to the bifurcated solution <Pc corresponding to 
C(E) = with E > 0; the spectrum remains discrete, and there are 
still four eigenvalues larger than 1, corresponding thus again to four stable 
directions; perturbation computations provide these eigenvalues: 

I n = 0,1,2, 3}. In the sequel, we will need to know that, for the 

first two eigenvalues, this approximation turns out to be exact: = 2, 

and = Ac(c) . For the eigenvalue the approximation is good only 
for small E; indeed while this eigenvalue is smooth in E, starts exactly at 

= 2C(0)-1 = , and at first increases for a little while, it soon reaches 
a maximum from which it decreases monotonically the limiting value 1 # 
2 = 2c(1)-1 as E approaches 1. Moreover, the fifth eigenvalue is now strictly 
smaller than 1, and thus all - but the first four - eigenvalues correspond to 
stable directions. 

Additional- precise and technically important - information on the global 
properties of the flow of the renormalization map Nc is also presented in 
[Collet and Eckmann, 1978]. 

The critical exponents of the hierarchical model. The temperature 
has to be brought back into the picture. This is done in a somewhat round-
about way by tuning the parameters c and 1 that define the Hamiltonian of 
the hierachical model (13.2.15) in such a manner that it has a preassigned 
critical temperature. To this effect, choose E > 0 sufficiently small, and let 
C(E) = ; this fixes the first parameter in (13.2.15). Next choose a pos-
itive number (30 > 0 which will play the role of a critical temperature for 
the Hamiltonian still to be specified by a properly tuned 1. One single re-
striction is imposed on the choice of (30' namely that it be different from 
41fe (2-c( E)) c( E) -2 . To complete the specification of 1, consider a sufficiently 
small neighborhood W of the fixed point CPs. This manifold - the elements 
of which are functions cP on which the renormalization map acts splits into 
a finite dimensional unstable manifold U and an infinite dimensional stable 
manifold S; in particular, any function CPs E S gets closer and closer to CPs un-
der the successive iterations of the renormalization map. One last technicality: 
it is possible to choose CPs E S such that it satisfies the following five condi-
tions: (i) CPs > 0, (ii) CPs is continuously differentiable, (iii) and (iv) the func-
tions x --+ x d: [CPs] (x) [CPs (x )]- and x --+ log [<Ps] (x)x d: [CPs] (x) [CPs (x )]-
are measurable and essentially bounded, (v) the ess-sup norm (see Example 
(D.2.3) II d: [CPs - CPc 1100 is small. Provided these conditions are satisfied, the 
ultimate results do not depend on the choice of CPs , one of the nice features 
of the situation, known as universality. The function Is is then defined by 
inverting the bijective transformations (13.2.30): 

(13.2.36) 

The Hamiltonian is specified by inserting in (13.2.15) C(E) for c and Is for 1. 
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The introduction of the temperature 13 with 13 E Vo where Vo is a small 
neighborhood of 130 changes e-fJofs to e-fJfs i.e. t'fJolfs] to t'fJUs]; this trans-
formation is traced in the <p-function space by the transformation 

<ps -+ <pfJ == SfJ -1 0 t'fJ[Js] = SfJ -10 t'fJ 0 t'fJo -10 SfJo [<ps] } . 
(13.2.37) 

= SfJ -1 (SfJol<Ps]) 10 

The curve traced in the <p-function space by 13 -+ <pfJ can be shown to be 
differentiable and to intersect the stable manifold transversally at <ps . Hence 
13 can be used as a local coordinate in the <p-function space. 

U = unstable manifold 

• 

S = stable manifold 

'Ps 

Fig. 13.3. The renormalization flow: straightened picture of the flow under Nc 
around 'Pc ; only one quadrant shown: similar patterns occur in all four quadrants 
depending on the choice of 'Po and the sign of /3 - /30. 

The argument leading to (13.2.37) allows to rewrite the renormalization 
map in the physical space of the J-functions as: 

J -+ NfJ[f] } (13.2.38) with 

which the following diagram describes: 
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tpf3 Nc:[tpf3l 

S{3-'C{3 r 1 C{3-'S{3 

Is Nf3[lsl 

A pattern similar to that depicted in Fig. 13.3 holds then in the space of 
the structure functions I defining the Hamiltonian. Note that this plays here 
the role played elsewhere (see e.g. Sect. 13.1) by the space referred to as the 
space of coupling constants. As the renormalization map is repeatedly ap-
plied, the system grows larger and thermodynamical functions computed at 
a temperature (3 near (30 approach corresponding values moving away on the 
unstable manifold. To capture them back, one let simultaneously (3 -+ (30' 
Clearly different thermodynamical functions involve different directions in 
the unstable manifold, and thus different rates as measured by the differ-
ent eigenvalues A(n) > 1 in the spectrum of VNc(c:) (1) . With the critical 
exponents defined generically for an observable A by 

lim [log lim (A)f3.J,AN ][logl(3-(30Il-1 
f3--+f3o N--+oo 

(13.2.39) 

where the limit as N -+ 00 is controlled by the renormalization map; [Collet 
and Eckmann, 1978] compute the following values for some of the traditional 
critical exponents 

(3 = [log c(c )]j[2 log A (2) (c)] 

'Y = [log 2 -logc(c)]/[logA(2)(c)] 

<5 = [2 logA(l)(c)]j[logc(c)] 

Tj = 1 + [logc(c)]j[log2] 

(13.2.40) 

Since A(l) and A(2) are computable functions of the coupling constant c(c) , 
(13.2.40) gives formula for each of the critical exponents separately. 

To make the connection with the scaling laws obtained in Sect. 13.1, we 
can eliminate A(1) = 2c(c)-! and A(2) from (13.2.40) to express two of these 
coefficients in terms of the other two, e.g.: 

and (13.2.41 ) 

The relations (13.2.41) are not new, but they are precisely on target: indeed, 
they also result from the elimination of a and 1/ from the general scaling 
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relations (13.1.6) and (13.1.13) with d = 1. Moreover, in the limit c -+ 0 and 
thus c -+ 2! - but in this limit only - the critical exponents listed above 
reduce to the classical values: f3 = = 1, J = 3 which are the classical 
values of these exponents - see (11.3.17-19) - and TJ = which is not, 
a reflection of the price one must expect to pay ultimately for limiting one's 
attention to the 1-d hierarchical model. 

With these results we close our overview of the renormalization idea as 
they apply without uncontrolled approximation to the one-dimensional hier-
archical model. 

Nevertheless, we should mention that much more is done in [Collet and 
Eckmann, 1978], in particular the analysis in the large - rather than the 
local analysis reviewed here - of the global flow under the renormalization 
map; this bears among other things on the existence and properties of the 
thermodynamical limit and distinct thermodynamical phases. For an updated 
discussion, see [Bleher and Major, 1987]. 

The Reader will also find in [Baker, Jr., 1990] and references therein, 
results pertaining to the extension of the method to higher-dimensional ver-
sions of the hierarchical model. One may certainly argue that the results 
obtained for the critical exponents of the one-dimensional hierarchical model 
do not match the empirical values obtained in real materials. This however 
is not the point of our argument. Indeed we wanted to illustrate the method 
with a particular model which can be analyzed in all mathematical rigor; 
which does not involve any prescription beyond the specification (13.2.15) of 
the Hamiltonian; and which provides values for individual exponents rather 
than just putative relations between them, thus providing a check that these 
relations pertain genuinely to the realm of statistical mechanics. 

The usefulness of hierachical couplings is not limited to the analysis of 
classical models; for instance, a generalization to quantum oscillators is pre-
sented in [Albeverio, Kondratiev, and Kozitsky, 1997]. 

The value of the renormalization program itself extends beyond this 
particular exactly solvable model. Other, more realistic models have been 
amenable through various approximations to a treatment by renormaliza-
tion methods to provide empirically reliable information [Wilson, 1971, Wil-
son and Fisher, 1972, Wilson and Kogut, 1974, Wilson, 1975, Fisher, 1974]. 
A personal perspective on that line ofresearch is offered in [Fisher, 1998]. The 
probabilistic approach to the renormalization program - which we chose to 
follow here - was initiated by [Di Castro and Jona Lasinio, 1969]; a synthesis 
of its developments is presented in [Benfatto and Gallavotti, 1995], the broad 
sweep of which informs a wide array of related ideas and techniques. 

The more traditional physics literature offers a somewhat bewildering 
range of more or less pragmatic texts, such as [Pfeuty and Toulouse, 1977, 
Patashinskii and Pokrovskii, 1979, Amit, 1984, Parisi, 1988, Goldenfeld, 1992, 
Cardy, 1996]. These either build - or are built on - analogies between the pro-
cess of iterating the renormalization map, which we reviewed in this section to 
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account for the divergences that appear near the critical point, and a program 
originally invented for the purpose of dealing with the divergences of quan-
tum field theory in four dimensions. Although the divergences themselves 
have different physical origins, the importance of formal relations between 
these two domains - as well as others, such as KAM theory - for a primary 
understanding of either of them is still debated; contrast for instance [Fisher, 
1998], [Benfatto and Gallavotti, 1995] and the rich crop of supportive refer-
ences cited there. 

In order to place succintly these in a historical perspective, one traces back 
the idea of a renormalization "group" in QFT to [Stuekelberg and Petermann, 
1953, Gell-Mann and Low, 1954] via [Bogoliubov and Shirkov, 1959][Chap. 
VIII]; for a vernacular presentation of the original formulations of QFT renor-
malization, see [Schweber, 1994]; and for an overview of the related math-
ematical issues there - just before the cross-over to the study of critical 
exponents in classical statistical mechanics - see [Hepp, 1969]. 

The scope of renormalization methods has become so encompassing dur-
ing the last thirty years, that it seems bound to stay as an integral part of our 
understanding of the coexistence of the different scales on which the world 
operates ... and thus must be apprehended and understood. In the lattice spin 
systems we considered, there are at least three such scales: the microscopic 
scale given by the lattice spacing, the meso scopic scale characterized by the 
correlation length, and the macroscopic scale on which the naked eye usually 
operates. For the hierarchical model of phase transitions and critical phenom-
ena, this coexistence is manifestly built in the Hamiltonian itself; however, 
for most physical systems, the focusing on a particular scale requires insights 
and the mediation of approximations that are more difficult to control. The 
renormalization program can be viewed as providing the "coarse graining" 
necessary to bridge from the micro- to the meso-scopic scales. 


