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These equations express that certain surfaces are topologically equivalent rel
the boundary.

Topology of some basic algebraic operations. Some very basic principles are
in play here: ‘creation’, ‘coming together’, ‘splitting up’, ‘annihilation’. These
principles have explicit mathematical manifestations as algebraic operations:

Principle Feynman diagram 2D cobordism Algebraic operation (in a k-algebra A)

merging multiplication A ⊗ A → A

creation unit k → A

splitting comultiplication A → A ⊗ A

annihilation counit A → k

Note that in the intuitive description there is a notion of time involved which
accounts for the distinction between coming-together and splitting-up – or per-
haps ‘time’ is too fancy a word, but at least there is a notion of start and finish.
Correspondingly, in the algebraic or categorical description the notion of mor-
phism involves a direction: morphisms are arrows, and they have well defined
source and target.

It is an important observation from category theory that many algebraic
structures admit descriptions purely in terms of arrows (instead of referring to
elements) and commutative diagrams (instead of equations among elements).
In particular, this is true for the notion of an algebra: an algebra is a vector
space A equipped with two maps A ⊗ A → A and k → A, satisfying the as-
sociativity axiom and the unit axiom. Now according to the above dictionary,
the left-hand relation of Equation (1) is just the topological expression of asso-
ciativity! Put in other words, the associativity equation has topological content:
it expresses the topological equivalence of two surfaces (or two graphs).
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critical points. The formula is

χ(M) =
∑

x critical

(−1)indexf (x).

1.4.15 Topological classification of surfaces. The classical result classifying
surfaces without boundary is (cf. Hirsch [27], Theorem 9.3.5.):

Two connected, compact oriented surfaces without boundary are diffeomor-
phic if and only if they have the same genus (or equivalently: the same Euler
characteristic).

(Note that the reflection argument of 1.4.8 shows, also for surfaces, that
there is always an orientation-reversing diffeomorphism from any surface to
itself, so reversing the orientation does not provide anything new.)

If a compact surface has boundary then this boundary is the disjoint union
of finitely many circles, each bounding a ‘missing disc’. The following result
shows that these missing discs can move around freely without changing the
topology:

Two connected, compact oriented surfaces with oriented boundary are dif-
feomorphic if and only if they have the same genus and the same number of
in-boundaries and the same number of out-boundaries.

The Euler characteristic can detect boundary components, but not their ori-
entation, so to classify surfaces via the Euler characteristic we still need to
specify how many of the boundaries are in and how many are out.

1.4.16 ‘Normal form’ of a connected surface. It is convenient to intro-
duce the normal form of a connected surface with m in-boundaries, n out-
boundaries, and genus g. It is actually a decomposition of the surface into a
number of basic cobordisms. The normal form has three parts: the first part
(called the in-part) is a cobordism m 1; the middle part (referred to as the
topological part) is a cobordism 1 1; and the third part (the out-part) goes
1 n.

Before giving the precise description, let us draw a figure of the normal
form in the case m = 5, g = 4, and n = 4.

Let us describe the in-part. Suppose first that m > 0. Take m − 1 copies
of and compose them, together with the appropriate number of cylinders,
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boundary. The point is that the two copies of ! can be distinguished, as ex-
plained in 1.3.24 (otherwise there would be no meaning in saying they are
disjoint!) Usually we make this distinction by calling one copy ‘the first copy’
and the other ‘the second copy’. But we could also choose a point in !

∐
! and

distinguish the two copies by telling which one contains the point and which
one does not. In this viewpoint, the true identity (the cylinder over !

∐
!)

has the property that this point stays on the same connected component of
the cobordism, while in the twist it changes component, so therefore the two
cannot be diffeomorphic.

Generators

Let us state right away the results about generators.

1.4.13 Proposition. The monoidal category 2Cob is generated under compo-
sition (serial connection) and disjoint union (parallel connection) by the fol-
lowing six cobordisms:

and

It should be noted that usually one does not include identity arrows when
listing generators for a category, because identity arrows are automatically
in every category, by definition. This is similar to the usage for groups or
monoids: one says (N,+, 0) is generated by 1, without listing 0: the element 0
can be written as a sum of 1s, namely the empty sum, so in this sense 0 is even
generated by the empty set! Here we include as generator just because it
makes it easier to think of cutting up surfaces in pieces. Since we include this
superfluous generator, we will also get some corresponding extra relations,
cf. 1.4.24.

We give two proofs of Proposition 1.4.13, since they both provide some
insight. In any case some nontrivial result about surfaces is needed. The first
proof relies directly on the classification of surfaces (quoted below): the con-
nected surfaces are classified by some topological invariants, and we simply
build a surface with given invariants! To get the nonconnected cobordisms we
use disjoint union and permutation of the factors of the disjoint union. Since
every permutation can be written as a composition of transpositions, the sixth
generator suffices to do this. The drawback of this first proof is that it does
not say so much about how a given surface relates to this ‘normal form’ – this
information is hidden in the quoted classification theorem.
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Topological Quantum Field Theory
Edward Witten*
School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA

Abstract. A twisted version of four dimensional supersymmetric gauge theory
is formulated. The model, which refines a nonrelativistic treatment by Atiyah,
appears to underlie many recent developments in topology of low dimensional
manifolds; the Donaldson polynomial invariants of four manifolds and the
Floer groups of three manifolds appear naturally. The model may also be
interesting from a physical viewpoint; it is in a sense a generally covariant
quantum field theory, albeit one in which general covariance is unbroken, there
are no gravitons, and the only excitations are topological.

1. Introduction

One of the dramatic developments in mathematics in recent years has been the
program initiated by Donaldson of studying the topology of low dimensional
manifolds via nonlinear classical field theory [1,2]. Donaldson's work uses
heavily the self-dual Yang-Mills equations, which were first introduced by
physicists [3], and depends on some important results originally obtained by
mathematical physicists, e.g. Taubes' theorem on existence of instantons on certain
smooth four manifolds [4] (as well as hard analysis of instanton moduli spaces
[5]). Thus there have been many conjectures that Donaldson's work may be
related to physical ideas in an intimate way. However, such a relation has not been
apparent in Donaldson's detailed constructions.

This picture has changed considerably because of the work of Floer on three
manifolds [6]. Floer's work involves tunneling amplitudes in 3 + 1 dimensions,
and has been interpreted by Atiyah [7] in terms of a modified version of
supersymmetric quantum gauge theory. (Floer theory has also been reviewed in
[8].) In this viewpoint, Floer theory can be seen as a generalization to infinite
dimensional function space of the supersymmetric approach to Morse theory [9].
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Edward Witten **
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NJ 08540, USA

Abstract. It is shown that 2 + 1 dimensional quantum Yang-Mills theory, with
an action consisting purely of the Chern-Simons term, is exactly soluble and
gives a natural framework for understanding the Jones polynomial of knot
theory in three dimensional terms. In this version, the Jones polynomial can be
generalized from S3 to arbitrary three manifolds, giving invariants of three
manifolds that are computable from a surgery presentation. These results shed
a surprising new light on conformal field theory in 1 -f-1 dimensions.

In a lecture at the Hermann Weyl Symposium last year [1], Michael Atiyah
proposed two problems for quantum field theorists. The first problem was to give
a physical interpretation to Donaldson theory. The second problem was to find an
intrinsically three dimensional definition of the Jones polynomial of knot theory.
These two problems might roughly be described as follows.

Donaldson theory is a key to understanding geometry in four dimensions.
Four is the physical dimension at least macroscopically, so one may take a slight
liberty and say that Donaldson theory is a key to understanding the geometry of
space-time. Geometers have long known that (via de Rham theory) the self-dual
and anti-self-dual Maxwell equations are related to natural topological invariants
of a four manifold, namely the second homology group and its intersection form.
For a simply connected four manifold, these are essentially the only classical
invariants, but they leave many basic questions out of reach. Donaldson's great
insight [2] was to realize that moduli spaces of solutions of the self-dual Yang-
Mills equations can be powerful tools for addressing these questions.

Donaldson theory has always been an intrinsically four dimensional theory,
and it has always been clear that it was connected with mathematical physics at
least at the level of classical nonlinear equations. The puzzle about Donaldson
theory was whether this theory was tied to more central ideas in physics, whether it
could be interpreted in terms of quantum field theory. The most important

* An expanded version of a lecture at the IAMP Congress, Swansea, July,
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• Definition: A 2d (closed) topological field theory Z 
is a symmetric monoidal functor from the category 
of cobordisms 2Cob to vector spaces
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• Theorem: there is a “bijection” between 2d closed 
TQFTs and commutative Frobenius algebras, given 
by sending Z to the algebra Z(S).

'

$I?Hm¥n*'s
M :S*->s sustain - s

M :S - son SIAM - Sos

ZCM ) :V*→V

ZCM ) : V - vaz
V=z( s )

'

$I?Hm¥n*'s
M :S*->s sustain - s

M :S - son SIAM - Sos

ZCM ) :V*→V

ZCM ) : V - vaz
V=z( s )

'

$I?Hm¥n*'s
M :S*->s sustain - s

M :S - son SIAM - Sos

ZCM ) :V*→V

ZCM ) : V - vaz
V=z( s )

'

$I?Hm¥n*'s
M :S*->s sustain - s

M :S - son SIAM - Sos

ZCM ) :V*→V

ZCM ) : V - vaz
V=z( s )



• 3+1 things to understand 

• Bordism category (Michelle + …) 

• Frobenius algebras (Patrick + …) 

• Relevant category theory (…) 

• Examples in physics (…)



• Higher dimensions (= higher categories) 

• Enriched 2d bordisms: 

• Open/closed 2D TQFTs (=Calabi-Yau categories) 

• Defect 2D TQFTs (=Pivotal 2-categories) 

• Fully extended 2D TQFTs

Beyond 2d closed TQFTs


