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Q1: Whatis a TQFT?
Q2: Why do physicists care about TQFT?

Q3: Why do mathematicians care about TQFT?

e Atiyah “Topological quantum field theory” 1988
e Witten “Topological quantum field theory” 1988

o Witten “Quantum field theory and the Jones
polynomial™ 1989



TOPOLOGICAL QUANTUM FIELD THEORIES (1988)
by MicHAeL ATIYAH

To René Thom on his 65th birthday.

1. Introduction

In recent years there has been a remarkable renaissance in the relation between
Geometry and Physics. This relation involves the most advanced and sophisticated
ideas on each side and appears to be extremely deep. The traditional links between
the two subjects, as embodied for example in Einstein’s Theory of General Relativity
or in Maxwell’s Equations for Electro-Magnetism are concerned essentially with classical
fields of force, governed by differential equations, and their geometrical interpretation.
The new feature of present developments is that links are being established between
quantum physics and fopology. It is no longer the purely local aspects that are involved
but their global counterparts. In a very general sense this should not be too surprising.
Both quantum theory and topology are characterized by discrete phenomena emerging
from a continuous background. However, the realization that this vague philosophical
view-point could be translated into reasonably precise and significant mathematical
statements is mainly due to the efforts of Edward Witten who, in a variety of directions,

has shown the insight that can be derived by examining the topological aspects of quantum
field theories.



(Atiyah 1988 continued)

The best starting point is undoubtedly Witten’s paper [11] where he explained
the geometric meaning of super-symmetry. It is well-known that the quantum Hamil-
tonian corresponding to a classical particle moving on a Riemannian manifold is just
the Laplace-Beltrami operator. Witten pointed out that, for super-symmetric quantum
mechanics, the Hamiltonian is just the Hodge-Laplacian. In this super-symmetric theory
differential forms are bosons or fermions depending on the parity of their degrees. Witten
went on to introduce a modified Hodge-Laplacian, depending on a real-valued function f.
He was then able to derive the Morse theory (relating critical points of f to the Betti
numbers of the manifold) by using the standard limiting procedures relating the quantum
and classical theories.



(Atiyah 1988 continued)

Perhaps a few further comments should be made to reassure the sceptical reader.
The quantum field theories of interest are inherently non-linear, but the non-linearities
have a natural origin, e.g. coming from non-abelian Lie groups. Moreover there is
usually some scaling or coupling parameter in the theory which in the limit relates to
the classical theory. Fundamental topological aspects of such a quantum field theory
should be independent of the parameters and it is therefore reasonable to expect them
to be computable (in some sense) by examining the classical limit. This means that
such topological information is essentially robust and should be independent of the
fine analytical details (and difficulties) of the full quantum theory. That is why it is
not unreasonable to expect to understand these topological aspects before the quantum
field theories have been shown to exist as rigorous mathematical structures. In fact, it
may well be that such topological understanding is a necessary pre-requisite to building
the analytical apparatus of the quantum theory.




(Atiyah 1988 continued)

My comments so far have been of a conventional kind, indicating that there may
be interesting topological aspects of quantum field theories and that these should be
important for the relevant physics. However, we can reverse the procedure and use
these quantum field theories as a conceptual tool to suggest new mathematical results.
It is remarkable that this reverse process appears to be extremely successful and has
led to spectacular progress in our understanding of geometry in low dimensions. It is probably
no accident that the usual quantum field theories can only be renormalized in (space-
time) dimensions < 4, and this is precisely the range in which difficult phenomena arise
leading to deep and beautiful theories (e.g. the works of Thurston in 3 dimensions and
Donaldson in 4 dimensions).

It now seems clear that the way to investigate the subtleties of low-dimensional
manifolds is to associate to them suitable infinite-dimensional manifolds (e.g. spaces
of connections) and to study these by standard linear methods (homology, etc.). In
other words we use quantum field theory as a refined tool to study low-dimensional
manifolds.
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Topological Quantum Field Theory

Edward Witten*
School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA

Abstract. A twisted version of four dimensional supersymmetric gauge theory
1s formulated. The model, which refines a nonrelativistic treatment by Atiyah,
appears to underlie many recent developments in topology of low dimensional
manifolds; the Donaldson polynomial invariants of four manifolds and the
Floer groups of three manifolds appear naturally. The model may also be
interesting from a physical viewpoint; it is in a sense a generally covariant
quantum field theory, albeit one in which general covariance is unbroken, there
are no gravitons, and the only excitations are topological.
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Quantum Field Theory and the Jones Polynomial *

Edward Witten **
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Abstract. It is shown that 2 + 1 dimensional quantum Yang-Mills theory, with
an action consisting purely of the Chern-Simons term, is exactly soluble and
gives a natural framework for understanding the Jones polynomial of knot
theory in three dimensional terms. In this version, the Jones polynomial can be
generalized from S° to arbitrary three manifolds, giving invariants of three
manifolds that are computable from a surgery presentation. These results shed
a surprising new light on conformal field theory in 1 4+ 1 dimensions.

In a lecture at the Hermann Weyl Symposium last year [1], Michael Atiyah
proposed two problems for quantum field theorists. The first problem was to give
a physical interpretation to Donaldson theory. The second problem was to find an
intrinsically three dimensional definition of the Jones polynomial of knot theory.
These two problems might roughly be described as follows.



2. Axioms for Topological Quantum Field Theories

Before embarking on the axioms it may be helpful to make a few comparisons
with standard homology theories. We can describe such a theory as a functor F from
the category of topological spaces (or of pairs of spaces) to the category say of A-modules,
where A is some fixed ground ring (commutative, with 1, e.g. A = Z, R or Q). This
functor satisfies various axioms including

(1) a homotopy axiom, described geometrically by using ¢ cylinders” X X I,

(i) an additive axiom asserting that, for disjoint sums, F(X; U X,) = F(X,) ® F(X,).
Note that (ii) implies, for the empty set o,
(i1)" F(e) = 0.

The theories we shall describe will be somewhat similar, but with the following
significant differences:

a) they will be defined only for manifolds of a fixed dimension,
b) the homotopy axiom is sirengthened by replacing cylinders with general cobordisms,

¢) the additive axiom is replaced by a multiplicative axiom, and correspondingly the
empty set has value A rather than 0.

Physically 4) is related to relativistic invariance while ¢) is indicative of the quantum
nature of the theory.



We come now to the promised axioms. A topological quantum field theory (QFT),
in dimension d defined over a ground ring A, consists of the following data:

(A) A finitely generated A-module Z(X) associated to each oriented closed smooth
d-dimensional manifold Z,

(B) An element Z(M) € Z(o9M) associated to each oriented smooth (d + 1)-dimensional
manifold (with boundary) M.

These data are subject to the following axioms, which we state briefly and expand upon
below:

(1) Z is functorial with respect to orientation preserving diffeomorphisms of £ and M,

(2) Z is involutory, i.e. Z(Z*) = Z(Z)* where Z* is  with opposite orientation and Z(Z)*
denotes the dual module (see below),

(3) Z is multiplicative.

We now elaborate on the precise meaning of the axioms. (1) means first
that an orientation preserving diffeomorphism f: 2% — 2’ induces an isomorphism
Z(f):Z(Z) > Z(Z') and that Z(gf) = Z(g) Z(f) for g: X' - Z". Also if f eltends
to an orientation preserving diffeomorphism M — M’, with oM = 2, oM’ = X', then
Z(f) takes Z(M) to Z(M').



The multiplicative axiom (3) asserts first that, for disjoint unions,
(3a) Z(Z,VZ,) =2Z(Z)®Z(Z,).

Moreover if OM; = Z, U X3, o0M, = £, U Z{ and M = M, Uy M, is the manifolc
obtained by glueing together the common 2Zj-component (see figure)

then we require:
(30) Z(M) = <Z(M,), Z(M,) >

where { , ) denotes the natural pairing
L(Z,) ®Z(Z3) ® Z(Z,)* ® Z(Z,) - Z(Z,) ®Z(Z,).



An equivalent way of formulating (34) is to decompose the boundary M into
two components (possibly empty) so that

M =3, U

then Z(M) € Z(Z,)* ® Z(Z,) = Hom(Z(Z,), Z(Z,)). We can therefore view any cobor-
dism M between X, and X, as inducing a linear transformation

ZM) : Z(Z,) — Z(Z,).

Axiom (3b) asserts that this is #ransitive when we compose bordisms.



2 1s meant to indicate the physical space (e.g. d = 3 for standard physics) and
the extra dimension in 2 X I is “imaginary ”’ time. The space Z(XZ) is the Hilbert
space of the quantum theory and a physical theory, with a Hamiltonian H, will have
an evolution operator ¢*¥ or an ‘ imaginary time *’ evolution operator ¢~ ‘¥, The main
feature of topological QFTs is that H = 0, which implies that there is no real dynamics
or propagation, along the cylinder £ X I. However, there can be non-trivial “ propa-
gation ”’ (or tunneling amplitudes) from X, to X, through an intervening manifold M
with M = Z§ U Z;: this reflects the topology of M.

The reader may wonder how a theory with zero Hamiltonian can be sensibly
formulated. The answer lies in the Feynman path-integral approach to QFT. This
incorporates relativistic invariance (which caters for general (d 4+ 1)-dimensional * space-
times ’’) and the theory is formally defined by writing down a suitable Lagrangian—a
functional of the classical fields of the theory. A Lagrangian which involves only first
derivatives in time formally leads to a zero Hamiltonian, but the Lagrangian itself may
have non-trivial features which relate it to the topology.




* Definition: A 2d (closed) topological field theory Z
IS a symmetric monoidal functor from the category
of cobordisms 2Cob to vector spaces

M: S S SuSe—3M 'S

M: S > SBZ R < =™ 59M<—> SOLS

j((:«? \\//®: X@z \ = Z(S>



e Theorem: the
TQFTs and co

e IS a "bijection” between 2d closed
mmutative Frobenius algebras, given

by sending Z-

0 the algebra Z(S).

M:<S"—> 3 SUSe—>9M <> S
M‘S—HSOSZ S — s9M<— §SUS
Z (M) N

Z(M)

v N = 2(9)



 3+1 things to understand
* Bordism category (Michelle + ...)
* Frobenius algebras (Patrick + ...)
* Relevant category theory (...)

 Examples in physics (...)



Beyond 2d closed TQFTs

* Higher dimensions (= higher categories)

* Enriched 2d bordisms:
* Open/closed 2D TQFTs (=Calabi-Yau categories)
* Defect 2D TQFTs (=Pivotal 2-categories)

* Fully extended 2D TQFTs



