Mathematics of AlphaGo

Daniel Murfet
therisingsea.org

http://therisingsea.org

What is Go?

AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 4

 Appears in Analects of

(3rd century BC)

Confucius

e Simple rules, complex

emergent gameplay

D. Silver et al, “Mastering the game of Go with deep neural
networks and tree search”, Nature 2016.

jacent_stones.png

https://upload.wikimedia.org/wikipedia/commons/9/92/
Go_adj

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez!, Laurent Sifre!, George van den Driessche!,

Julian Schrittwieser!, loannis Antonoglou!, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman', Dominik Grewe',
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap!, Madeleine Leach!, Koray Kavukcuoglu!,

Thore Graepel' & Demis Hassabis!

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

484 | NATURE | VOL 529 | 28 JANUARY 2016

What is AlphaGo?

A program that plays Go
AlphaGo > Lee Sedol (best of five games, March 2016).
AlphaGo > Ke Jie (best of three games, May 2017).

AlphaGo, AlphaGo Zero, AlphaZero

Netflix documentary “AlphaGo”

https://www.netflix.com/au/title/80190844

Why is AlphaGo interesting?

Most of the information in AlphaGo is in real-valued
weights which are learned not written.

Computer science is becoming a natural science (Norvig).

This natural science is a new muse for mathematics.
Question: why does deep learning work?

Question: what kind of mathematical structure does this
class of programs form?

https://vimeo.com/215418110

Into the detalls...

 AlphaGo is a neural network which outputs, given a
board configuration, a distribution over moves (policy)
and an evaluation of the given board (value).

e This neural network is a function parametrised by a vector
of real numbers, trained by reinforcement learning: a
win increases the probability of contributing moves.

e This training process approximates the iteration towards
the unique fixed point of a contraction mapping, defined
on the complete metric space of value functions for any
alternating Markov game.

Neural networks

Feedforward RelLU neural networks

Definition. A feedforward ReL U neural network N with input width n, output width m
and depth k consists of

e A sequence of integer widths n = dy,ds, ..., dg 1 = m,
e A sequence of affine functions {A; : R% — R%+1}k

Associated to every ReLU net N is a continuous function

fv R — R™,
fav=AroReLUo---0ReLUoA,

where the rectified linear unit (ReLLU) is the function

ReLU : RY — R?,
(21,...,xq) — (max{xy,0}, -, max{xy,0}).

RelLU networks are function approximators

Theorem (Stone-Weierstrass). If K C R" is compact, f : K — R™ is continuous and
e > 0, there exists a polynomial function g : R™ — R™ such that

sup || f(z) — g(z)|| <e.
reK

RelLU networks are function approximators

Theorem (Stone-Weierstrass). If K C R" is compact, f : K — R™ is continuous and
e > 0, there exists a polynomial function g : R™ — R™ such that

sup || f(z) — g(z)|| <e.
reK

Theorem (Hanin-Sellke '17). If K C R" s compact, f : K — R™ 1is continuous and
e > 0, there exists a ReLU net N' with widths bounded above by m + n such that

sup || f(z) — far(2)]] <e.

reK

This is achievable with depth O(diam(K)/wjil(e))”H.

wit(e) =sup{d > 0|[lz —yll <6 = [f(z) - fW)I < e}

ReLU = Poly = Cts(K,R™)

Examples of ReLU networks
ReLU net N = {4; : R — R%+1}r | € Hr];:1 Mg,y a,(R) % Hf:1 R+

fa: R" — R™,
fnv =AroReLUo---0ReLUoA,

n=2m=1k=2,dy=1

Inv(x1,22) = q11 ReLU(wy121 + wisxe + b1) 4+ ¢4

Examples of ReLU networks

n=2m=1k=2,dy =1

c <O
T4 O
° W, o’
\ OL“ ((A/ll)(/\)(l)
/.bl < >O
° Wi
£0

Inv(x1,22) = q11 ReLU(wy121 + wisxe + b1) 4+ ¢4

Examples of ReLU networks

c, <0

W Cf“ > O

ol”_70

20

<0

fN(xlv $2) — {11 RGLU(w11£E1 + W12T2 + bl)
+ g12 ReLU (w9121 + waoxs + by) + ¢4

Examples of ReLU networks

n=2m=1k=3dy=2ds =2

U = W11T1 + Wwioxo + by u = RGLU(U)

v = w21%1 + Wa2k2 + ba 0 = ReLU(v)

fnv(x1,22) = y11 ReLU(q11% + q120 + ¢1)
+ 112 ReLU (g1 + q220 + ¢2) + dy

n=2m=1k=3dy=2ds =2

f./\/'($17 5132) — Y11 ReLU(Qnﬂ + @120 + 01)
+ 112 ReLU(g21u + qoo¥ + ¢2) + d;

Ci, < O
4,7 O >0
1'1/ﬂ2>~> O
Ju <0
Y2 > O
Yu9izt \jta‘121> O

0]11)0]2\ > O

<0

AN
N4y W 4G=0
CfLL vV +(=0

z ﬂILV‘f'C, =0
/

ij - tj\l RQLU((?[\D_V'}_C() j[N — jHRQL\/(c[\\u + C()
F Y ReV(90V +2) F Y RelV(qs &t) td

Gux+¢;=0

AlphaGo Zero architecture

AlphaGo uses a special kind of feedforward RelLU network
called a convolutional neural network developed for computer
vision, with constraints on the weights.

Skip connections and batch normalisation (“residual network”)
following state of the art models for computer vision tasks.

Input dimension: 19x19x17 = 6137
Output dimension: 19x19 (positions) + 1 (pass) + 1 (value) = 363
Hidden layer width: maximum 19x19x256 = 92416

Network depth: 42

Reinforcement
learning (RL)

Markov Decision Processes

Definition. A finite Markov Decision Process (MDP) is a finite set S of states, a finte

set A of actions, for each s € S a subset A(s) C A of allowed actions in state s, a reward
function R: S — R, for each pair s € S,a € A a probability distribution P(s’|s,a) over
states s’ € S, and a discount factor v € (0, 1).

Definition. A policy is a function 7 : § — AA such that w(als) =0 if a & A(s).

Definition. The space of policies P is the set of policies with metric

doo(m, m") = supsup | (als) — 7'(als)]| .
s€S acA

The discounted reward of a sequence of states sg, s1, Ss, ... is
R(SO) + ’YR(Sl) + ’}/QR(SQ) + -

The goal: find a policy which maximises the expected discounted reward.

Markov Decision Processes

Definition. A wvalue function is a function v : S — R.

Definition. The space of value functions V is the set of value functions with metric

doo(v,0") = sup|v(s) — v'(s)].

seS

Given a policy 7 : & —> AA the value of a state s € S to an agent following m is the
time-discounted expected value of future rewards for trajectories starting at s

—]E{f:’yt}%(st)lso = s} .

Theorem. The function ®, :V — V defined by

O (v)(s))+ Y > mlals)P(s']s,a)u(s)

acA(s) s’'eS

has a unique fixed point v,.

Policies versus value functions

-~ V “policy evaluation”

P < T v % “greedy policy”

To(S) = argmax ¢ 4(s) Z P(s'|s,a)v(s)

s’'eS

Optimal policies and value functions

Definition. A policy 7 is optimal if v; > v, for all policies p.

Theorem (Bellman). The function ® : V — V defined by

d(v)(s) = R(s) + sup Z vP(s'|s,a)v(s’) (Bellman operator)
acA(s) Ses

has a unique fixed point v* and
e for every policy m € P we have v* > v,

e the policy ™ = m,+ 1s optimal and v~ = v*.

e |terating the Bellman operator exactly is usually infeasible.

 Reinforcement learning: the study of algorithms approximating this fixed
point iteration, for classes of MDPs that we care about.

Alternating Markov games

Definition. An alternating Markov Game is an MDP together with a decomposition of
the state space S = Sy 1 S; (we write |s| = 0if s € Sg and |s| = 1 if s € §; and call these
even or odd states) such that the only possible transitions change the parity:

P(s'|s,a) =0 if |s'| = |s]|.

We think of a policy 7 : § — AA as a pair of policies m; = 7|s., one for the even player
and one for the odd player, and R(s) is the reward obtained by the even player in state s
(the odd player receives —R(s), so this is a zero-sum game).

Go as an alternating Markov game

Definition. The alternating Markov Game Go has

where the even player is black. A state

S = (80’8_1, .. -78—77p)

is even if p = 0 and odd otherwise. The set of actions A(s) is the set of allowed moves
of player p from board configuration sy (taking into account the ko rule using s_1). The
reward R(s) is only nonzero if s is a terminal configuration and in that case

R(s) = {—I—l black wins |

—1 white wins

Policies versus value functions

-~ V “policy evaluation”

P < Y

T <— v

(Y

“graded greedy policy”

() = Argmax, 4(,) Z P(s'|s,a)(—=1)"ly(s")

s’'eS

Theorem. Given a Markov Game the function ®* : VYV — V defined by

O*(v)(s) = R(s) + (1) sup Y vP(s/|s,a)(~1)"lv(s) (graded Beliman
a€A(s) e operator)
has a unique fived point v*, which 1s the unique Nash equilibrium. That 1s, writing m* = 7'(';_L*
and wF = m*|s,, the policy 7§ is optimal against w5, the policy w5 is optimal against
and any such pair has the value function v*.

* The fixed point of the graded Bellman operator is a discounted minimax.
Once again, it is often impractical to evaluate this exactly (e.g. in Go).

* Deep reinforcement learning: approximate the policy and value functions
by neural networks and approximate the iteration to this fixed point.

Deep RL for Markov games

S = ({empty,white,black}{l """ 19})8 x {0,1} » AA X R
inclusion
S — ([O, 1]361 « [07 1]361)8 v [O, 1]361 softmax
inclusion
S/ — ROI3T e » RIIXIIHL o o

AlphaGo neural network

f@ : R6137 ; R19X19+1 ¥ R

(m9(5),va(s)) := fo(s)

Deep RL

e Step 1. approximate policy and value functions.
e Step 2: project the Bellman iteration onto these approximations.

e Step 3: ask someone for millions of dollars so you can run your
projected Bellman iteration on fancy hardware.

AlphaGo neural network

f@ : R6137 ; R19><19—|—1 < R

(m9(5),va(s)) := fo(s)

P - BT

e P is the space of policies.

e) is the space of value functions.

e IV maps policies to value functions V(7)) = v,.
e P maps value functions to policies P(v) = 7=,

o ®F is the graded Bellman operator.

e The fixed point v* of ®* is the unique Nash equilibrium.

Yo

Nash

(%0

)"
U1

)
U2
/U>l<

Nash

Nash

Nash

RelLU

ReL,U \
Uy, 0 0
e 1 1

0]
> (pj:
U1 Vg
N\

H/Uei—i—l — &~ (7}97;)

In each step, we train a neural network fo,,, = (ve,,,,ms,,,) such that

o < €411

||7T97:+1 _ P((I):_

(V6;))]]oo < €i41

P —
ReL.U \ / ReLU

0 70 Vo Vg

(I):I:
o Ul U1 Ug
N\
V6,11 = visilloo = [v6,0 — 2T (Vi) lloo
Vg1 — ¥ (v0,)[loo + |2 (vg,) — D5 (i)l

VARNVA

Eit+l T VHU&; — U |oo

Provided &; < +* one can show vy, — v*, g, —> 7*.

0
o T >
1 1 Ul \ ”Ug

RelLU

In each step, we train a neural network fo,,, = (ve,,,,ms,,,) such that

H/UefH—l _2:(7}97;) |oo < Ei+1

Too expensive!

||7797:+1 __P((I):(U&;))Hoo < Ei+1

0
o T >
1 1 Ul \ ”Ug

RelLU

In each step, we train a neural network fo,,, = (ve,,,,ms,,,) such that

||v97;+1 _ ((I):)d(vei)

‘oo < Ei+1]
Too expensive!

(d times)

[70. — P((2%)%(vo,)) oo < €i41

0
> "
YN 1 (N] \ Vg

In each step, we train a neural network fo,,, = (ve,,,,ms,,,) such that

-\ d
||v97:+1 — ((I)j)MC (Uei) |OO < €i+1 Monte-Carlo

tree search

Hﬂ-ez’—|—1 _ PMC(((I):)g/IC(UQi))HOO < Ei+1

0]
> "
T, T V1 \ Vo

In each step, we train a neural network fo,,, = (ve,,,,ms,,,) such that

Hvei—l—l _ ((I):)g/IC(UQi) ‘2 < €41

Drr (Puc((®)c(ve,)) | T,) < it

relative entropy

P
ReL.U \ /
oo o (%0
Pt
o, 1 U1
N\

Drr (Puc((®)c(ve,)) | T,) < it

relative entropy

In each step, we train a neural network fo,,, = (ve,,,,ms,,,) such that

Hvei_l_l — ((I):)g/[c (Uei)Hz < €i41 training data from
25,000 games

of self-play

P
ReLLU \ /
O, 0 (%0
Pt
o, 1 U1
N\

Drr (Puc((®)c(ve,)) | T,) < it

relative entropy

In each step, we train a neural network fo,,, = (ve,,,,ms,,,) such that

(still a lie) H?JeiJrl — (<I>:)§4C (eri)Hz < Ei+1 training data from
25,000 games

of self-play

AlphaGo algorithm summary

Step 1: approximate policy and value functions by a deep
convolutional neural network.

Step 2: project the Bellman iteration onto these approximations
e Monte-Carlo tree search to approximate supremums

e self-play to generate the training data

AlphaGo neural network

f@ : R6137 ; R19X19+1 < R

(m9(5),va(5)) := fo(s)

New programs, new math

New kind of program: differentiable tensor programs that compute
with learned representations.

These programs will be important for natural science: chemistry
(Molecular transformer), protein folding (AlphaFold), engineering
complex quantum states, ...

Desiderata: large combinatorial search space, clear objective function,
lots of ground truth data or an efficient simulator (Hassabis 50:10)

New mathematics: Neural Tangent Kernel, tensor programs, linear
logic, differential categories, ...

Ask an expert. deep learning in Australia.

https://cbmm.mit.edu/video/power-self-learning-systems
https://gist.github.com/dmurfet/072e8503368acdccf32b641f1e800e99

References

* (AlphaGo) David Silver, Aja Huang, Chris J. Maddison, Arthur Guez,

Laurent Sifre, George van den Driessche,

Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc
| anctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, llya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel and Demis Hassabis, “Mastering

the game of Go with deep neural networks and tree search”, Nature
2016.

 (AlphaGo Zero) David Silver, Julian Schrittwieser, Karen Simonyan,
loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian
Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den
Driessche, Thore Graepel and Demis Hassabis, “Mastering the game
of Go without human knowledge”, Nature 2017.

References

(Deep learning text) |. Goodfellow, Y. Bengio and A. Courville, “Deep learning”, MIT Press, 2016.

(Reinforcement learning text) R. S. Sutton and A. G. Barto, “Reinforcement learning: an
introduction”, 2nd edition, MIT Press, 2018.

Rules of Go: https://www.britgo.org/intro/intro2.html

P. Norvig, “As we may program”, talk May 2017.

M. Sadler, N. Regan, “Game Changer: AlphaZero's Groundbreaking Chess Strategies and the
Promise of Al”.

B. Hanin and M. Sellke, “Approximating continuous functions by ReLU nets of minimal width”,
arXiv:1710.11278.

Deep reinforcement learning seminar: http://therisingsea.org/post/seminar-ch/

https://www.britgo.org/intro/intro2.html
http://therisingsea.org/post/seminar-ch/

References

Applications to Natural Science

e P. Schwaller et al “Molecular Transformer: A Model for Uncertainty-Calibrated
Chemical Reaction Prediction” ACS Cent. Sci 2019.

e (AlphaFold) R. Evans et al “De novo structure prediction with deep-learning based
scoring” preprint 2018.

e Q. Carleo et al “Machine learning and the physical sciences” arXiv:1903.10563.

Mathematics

e A. Jacot, F. Gabriel, and C. Hongler “Neural tangent kernel: Convergence and
generalization in neural networks” In Advances in neural information
processing systems, pages 8571-8580, 2018.

(. Yang “Tensor Programs |: Wide Feedforward or Recurrent Neural
Networks of Any Architecture are Gaussian Processes” arXiv: 1910.12478.

Bonus slides

AlphaGo: conclusion

AlphaGo is the product of: neural networks, reinforcement learning and
Monte-Carlo tree search.

AlphaGo: included hand-coded features by Go experts
AlphaGo Zero: “zero” human knowledge about Go

AlphaZero: also plays Chess and Shogi (same hyperparameters, new
weights trained from scratch).

Less search than standard chess engines (10,000s vs 10,000,000s).

Raw network play: Elo 3055 (9 dan, #486)

Is AlphaGo good news for Go?

https://en.wikipedia.org/wiki/Go_ranks_and_ratings
https://www.goratings.org/en/

http://therisingsea.org/post/seminar-ch/

Current seminar

In semester two of 2019 we are going to study reasoning in the context of deep reinforcement learning with an
aim to understand AlphaGo and related breakthroughs, such as AlphaStar. Along the way we will look at deep
learning more generally. Some relevant background information:

» Deep learning in Australia a very rough list of researchers in this area.
e An introduction to deep reinforcement learning.

» AlphaGo documentary on NetFlix.

» AlphaStar blog post

There are three main components of AlphaGo: Monte-Carlo tree search, deep learning and reinforcement learning,
and we will have talks on all three aspects. One important running theme will be the dichotomy between problems
with small and large state spaces, and the corresponding need for function approximation (the successful
incorporation of which is what makes AlphaGo scientifically interesting).

Talk schedule:

» Lecture 0: Geoff Hinton video “Deep learning” (brief notes by DM)

« Lecture 1: Daniel Murfet “Introduction to reinforcement learning” (notes | video)

 Lecture 2: James Clift “Turing and Intelligent Machinery” (notes | video | Turing’s paper)

 Lecture 3: Thomas Quella “Hopfield networks and statistical mechanics” (notes | video)

« Lecture 4: Will Troiani “Universal approximation by feedforward networks” (notes | paper)

» Lecture 5: Susan Wei “An introduction to deep learning” (autodiff, optimisation alg SGD, initialisations)
» Lecture 6: Mingming Gong “Convolutional networks and deep reinforcement learning” (Sutton & Barto)
» Lecture 7: James Clift “Solving games with tree search” (alpha-beta search, dynamic programming)

» Lecture 8: Daniel Murfet “AlphaGo” (following the DeepMind paper, also Sutton & Barto)

« Lecture 9: Daniel Murfet “AlphaStar and attention” (including Transformer models in deep RL, here)

» Lecture 10: Elliot Catt “Solomonoff induction and the limits of RL”

http://therisingsea.org/post/seminar-ch/

Theorem. The function @, :)V — V defined by

Or(v)(s))+) > m(als)P(s']s, a)u(s)

acA(s) s'eS

has a unique fixed point v,.

Proof. Since V is a complete metric space, it suffices by the Banach fixed point theorem
to prove that &, is a «y-contraction mapping. But for v,v" € V

@ (0)(s) = D (0)(5)| < D > ym(als)P(s]s, a)lu(s") —o'(s))]

acA(s) s'€S

S‘ ywr (als)P(s'|s, a)ds (v, v")

acA(s) s'eS
:deOO(7)

Hence doo (D (v), P (V")) < vdoo(v,0"). O

v =g, O()(s)=R(s)+(—1" sup D 4P(s']s,a)(—1)"u(s)

acA(s) SeS
general
s€8y (DF)2(v)(s) = R(s) +~ sup [R(s')ﬂ inf v(s")}
a€A(s) a’€A(s’)
(®5)*(v)(s) & sup inf wo(s") ‘ Go, non-terminal
a€A(s) a’'€A(s")
v 1
0.5
S O
s’ @ O @
0.2 0.5 0.2
a/
M \ 4
g @ @ @ @ @
0.2 1 0.5 0.7 0.2

UV = Vg,
s €Sy
S
a l
/
S
/
a
v
//
S

O (v)(s) = R(s) + (=1 sup » 4 P(s'|s,a)(—1)"lv(s)
acA(s) SeS
general
(@5)2(v)(s) = R(s) + sup |R(s)+7 inf o(s")]
a€A(s) a’'€A(s")
(®5)*(v)(s) = sup inf wv(s") ‘ Go, non-terminal
aEA(S) a’'€A(s") .
’y ~
How to truncate these?
0.5
O \
» O O
0.2 0.5 \ 0.2
\ 4
O » O » O
0.2 1 0.5 0.7 0.2

v=vp, ¥H)(s) = R(s)+ (- sup 3 yP(s/ls,a) (1) o(s)
o general
S8 (@()(s) = R(s) +7 sup. R() + nf (")
.
(®F)*(v)(s) = sup inf w(s") ‘ Go, non-terminal

aEA(S) a’€A(s’)
v 1

How to truncate these?
Let m = my,,v = vy, be the current policy and value function.

To approximate (®)¢(v)(s) we need to approximate the d nested supremums.

AlphaGo searches over sequences of < d actions using an algorithm which prioritises
those paths likely to contribute to chain of suprema according to m,v.

This algorithm is called Monte-Carlo tree search.

The search looks at 1600 paths to evaluate this approximation

(2F)Mc(v)(s) = (2F)*(v)(s).

5,000 -
4,000 -
3,000 -
2,000 -
1,000 -

—eTmmmoo oo AlphaGo Zero (40 blocks)
5185

Ke Jie (#1 human)
3687

1

Elo rating

P(a defeats b) =

1 + exp(celo(e(b) — e(a))

— AlphaGo Zero 40 blocks
--- AlphaGo Master P(KJ > AGZ) = 0.023
--- AlphaGo Lee

—1,000 -
—2,000 -

0 5 10 15 20 25 30 35 40
Days

Humankind has accumulated Go knowledge from millions of games
played over thousands of years, collectively distilled into patterns, prov-
erbs and books. In the space of a few days, starting tabula rasa, AlphaGo
Zero was able to rediscover much of this Go knowledge, as well as novel
strategies that provide new insights into the oldest of games.

D. Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017.

AlphaStar network architecture

Value Action type = — Delay — Queued — Selected units — Target unit Target point
Value Network Residual MLP Pointer Network Attention Deconv ResNet
A A A
|
1
1
1
1
Embedding g’ Embedding Embedding g Embedding '
1
MLP !
|
- \ l
____________________ 4 1
Core
Deep LSTM
Legend
Scalar encoder Entity encoder Spatial encoder
MLP Transformer ResNet Action)
Connection
Output —_—
Neural network Skip
connection
Baseline features Scalar features Entities Minimap Input ~ -=------ >

O. Vinyals et al “Grandmaster level in StarCraft Il using multi-agent reinforcement learning”, Extended data.

Alternating Markov games

Definition. An alternating Markov Game is an MDP together with a decomposition of
the state space & = Sy 1 S; (we write |s| = 0if s € Sg and |s| = 1 if s € §; and call these
even or odd states) such that the only possible transitions change the parity:

P(s'|s,a) =0 if |s'| = |s].

We think of a policy 7 : § — AA as a pair of policies m; = 7|s., one for the even player

and one for the odd player, and R(s) is the reward obtained by the even player in state s
(the odd player receives —R(s), so this is a zero-sum game).

Remark. If (§ = Sy11 S5y, A, R, P) is an alternating Markov game and 7 : §§ — AA is
a policy for the odd player, then there is a Markov Decision Process

(807 -’407 R‘SO? Pﬂl)

where the odd player acts as the environment for the even player, so for s € &

P™(s"|s,a) = ZZP "|s,a)m(a'|s")P(s"|s,a").

a’'eAs'eS

Domain knowledge. Our primary contribution is to demonstrate that superhu-
man performance can be achieved without human domain knowledge. To clarify
this contribution, we enumerate the domain knowledge that AlphaGo Zero uses,
explicitly or implicitly, either in its training procedure or its MCTS; these are the
items of knowledge that would need to be replaced for AlphaGo Zero to learn a
different (alternating Markov) game.

(1) AlphaGo Zero is provided with perfect knowledge of the game rules. These
are used during MCTS, to simulate the positions resulting from a sequence of
moves, and to score any simulations that reach a terminal state. Games terminate
when both players pass or after 19 x 19 x 2 =722 moves. In addition, the player is
provided with the set of legal moves in each position.

(2) AlphaGo Zero uses Tromp-Taylor scoring® during MCTS simulations and
self-play training. This is because human scores (Chinese, Japanese or Korean
rules) are not well-defined if the game terminates before territorial boundaries
are resolved. However, all tournament and evaluation games were scored using
Chinese rules.

(3) The input features describing the position are structured as a 19 x 19 image;
that is, the neural network architecture is matched to the grid-structure of the board.

(4) The rules of Go are invariant under rotation and reflection; this knowledge
has been used in AlphaGo Zero both by augmenting the dataset during training to
include rotations and reflections of each position, and to sample random rotations
or reflections of the position during MCTS (see Search algorithm). Aside from
komi, the rules of Go are also invariant to colour transposition; this knowledge is
exploited by representing the board from the perspective of the current player (see
Neural network architecture).

+ input representation (7 prior moves)

D. Silver et al “Mastering the game of Go without human knowledge”, Methods.

arXiv.org > c¢s > arXiv:1909.00668

Computer Science > Machine Learning
Logic and the 2-Simplicial Transformer

James Clift, Dmitry Doryn, Daniel Murfet, James Wallbridge
(Submitted on 2 Sep 2019)

We introduce the 2-simplicial Transformer, an extension of the Transformer which includes a form of higher-
dimensional attention generalising the dot-product attention, and uses this attention to update entity representations
with tensor products of value vectors. We show that this architecture is a useful inductive bias for logical reasoning in
the context of deep reinforcement learning.

Ll dmurfet / 2simplicialtransformer ©Owatch 1 %star 1 YFork 1

<> Code Issues 0 Pull requests 0 Projects 0 Security Insights

Code for the 2-simplicial Transformer paper

D 27 commits ¥ 1 branch © O releases 22 2 contributors
[

Branch: master v New pull request Find file Clone or download ~

jwallbridge Update README.md Latest commit 8cb102f on 22 Sep

B8 agent Remove transformer_style reference 2 months ago

B env | Indates 2 months aao

Theorem (Hanin-Sellke '17). If K C R" is compact, f : K — R™ is continuous and
e > 0, there exists a ReLU net N with widths bounded above by m + n such that

sup || f(z) = far(2)ll <e.

reK
9,0 4
[oXe] .'.. o
0.0
~5 60 670 o)

f:[=6,6] x [=6,6] —> [—1,1]

playground.tensorflow.org

FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which Test loss 0.135
properties do Y — Y- Training loss 0.096
you want to
feed in? 2 neurons 2 neurons
< B g Sgees B Sl G
N S, A o 4 00 o e
N\ ~ > ' = : 8]
« ><~ 4 of = G ...
, "¢ - ,' o ..‘.
X2 D—‘::__ _____ --==:———————:::===l'
< -
The outputs are
X2 This is the output mixed with varying —0
from one neuron. weights, shown
Hover to see it by the thickness
larger. of the lines.
X,
XX,
|
0
Colors shows
data, neuron and F ' \

Not quite! ! i 1

weight values.

http://playground.tensorflow.org

FEATURES

Which

properties do
you want to

feed in?

X

XX,

sin(X,)

playground.tensorflow.org

+ — 2 HIDDEN LAYERS

+ -

3

neurons

OUTPUT

Test loss 0.001

+ -

3 neurons

This is the output
from one neuron.
Hover to see it
larger.

ey
_% ________ ﬂ/ II
/ T
< /// o ,[
AN J

The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

That’s better

Training loss 0.001

Colors shows
data, neuron and F
weight values. '

http://playground.tensorflow.org

Rn _ R19X19X17

N\

Neural network architecture. The input to the neural network isa 19 x 19 x 17
image stack comprising 17 binary feature planes. Eight feature planes, X;, consist
of binary values indicating the presence of the current player’s stones (X:=1 if
intersection 7 contains a stone of the player's colour at time-step t; 0 if the intersec-
tion is empty, contains an opponent stone, or if £ <0). A further 8 feature planes,
Y}, represent the corresponding features for the opponent’s stones. The final feature
plane, C, represents the colour to play, and has a constant value of either 1 if black
is to play or 0 if white is to play. These planes are concatenated together to give
input features s;,= [X, Yy, Xi—1, Yi—15..., Xi—7, Y7, C]. History features X, Y; are
necessary, because Go is not fully observable solely from the current stones, as
repetitions are forbidden; similarly, the colour feature C is necessary, because the
komi is not observable.

D. Silver et al “Mastering the game of Go without human knowledge”, Methods.

The input features s; are processed by a residual tower that consists of a single
convolutional block followed by either 19 or 39 residual blocks®.

The convolutional block applies the following modules:

(1) A convolution of 256 filters of kernel size 3 x 3 with stride 1

(2) Batch normalization'®

(3) A rectifier nonlinearity

Each residual block applies the following modules sequentially to its input:

(1) A convolution of 256 filters of kernel size 3 x 3 with stride 1

(2) Batch normalization

(3) A rectifier nonlinearity

(4) A convolution of 256 filters of kernel size 3 x 3 with stride 1

(5) Batch normalization

(6) A skip connection that adds the input to the block

(7) A rectifier nonlinearity

The output of the residual tower is passed into two separate ‘heads’ for
computing the policy and value. The policy head applies the following modules:

(1) A convolution of 2 filters of kernel size 1 x 1 with stride 1

(2) Batch normalization

(3) A rectifier nonlinearity

(4) A fully connected linear layer that outputs a vector of size 19*+ 1 =362,
corresponding to logit probabilities for all intersections and the pass move

The value head applies the following modules:

(1) A convolution of 1 filter of kernel size 1 x 1 with stride 1

(2) Batch normalization

(3) A rectifier nonlinearity

(4) A fully connected linear layer to a hidden layer of size 256

(5) A rectifier nonlinearity

(6) A fully connected linear layer to a scalar

(7) A tanh nonlinearity outputting a scalar in the range [—1, 1]

The overall network depth, in the 20- or 40-block network, is 39 or 79 param-
eterized layers, respectively, for the residual tower, plus an additional 2 layers for
the policy head and 3 layers for the value head.

D. Silver et al “Mastering the game of Go without human knowledge”, Methods.

Appendix: Ko rule

Diagram 12 Diagram 13

% L 34 8

@:

o’ o’e

The ko rule

At the top of Diagram 12, Black can capture a stone by playing at r. This results in the
situation at the top of Diagram 13. However, this stone is itself vulnerable to capture by a
White play at u in Diagram 13. If White were allowed to recapture immediately at u, the
position would revert to that in Diagram 12, and there would be nothing to prevent this capture
and recapture continuing indefinitely. This pattern of stones is called ko - a Japanese term
meaning eternity. Two other possible shapes for a ko, on the edge of the board and in the
corner, are also shown in this diagram.

Amount of search per decision

Human State-of-the-art
Grandmaster AlphaZero chess engine
© - -
100’s 10,000’s 10,000,000s
of moves of moves of moves

D. Hassabis, “The power of self-learning systems”, talk MIT March 20, 2019 (link)

https://cbmm.mit.edu/video/power-self-learning-systems

