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Talk Outline

I
.

Derivatives of Algorithms ?

- Tuning machines
,

Universal Tuning machines

- The Ehrhard - Regnier derivative

2
.

The problem of inductive inference / program synthesis
- General problem statement

- The probabilistic approach

3
. Program synthesis via naive probability



What is an algorithm ?

DEI A Turing Machine M on alphabet I and set of states Q ( both

finite sets
,

with special symbols blank DEE and 0,1 EE and

states START
,

HALTEQ ) is a function ( so M = C QQ ,
8 ) )

§ : [ x Q -7 Ex Q x ( LEFT
,

RIGHT
,

STAY }

which describes the time evolution of a configuration
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What is an algorithm ?

DEI Given a Turing machine M we write M ( x ) = y for  x. ye to , is
*

if on a configuration ( x
,

START ) the machine reaches the

configuration ( y ,
HALT ) after finitely many steps .

Theorem ( Turing ) There exists a Turing machine U such that for every

Tuning machine M there exists a string culm ) e to , B
*

such that

for all x E f 0
,

I }*

-

 if M ( x ) = y then U (cuC M )
,

x ) = y ,
and

-

 if M does not halt  on input  x
,

then U does not halt  on ( culm )
,

x )

• Such a machine is called a Universal Tuning Machine ( UTM )
.



What is an algorithm ?

Example The Tuning Machine M has I = { 170,11
,

Q = { START
,

HALT }

8 ( x
,

HALT ) = ( x , HALT
,

STAY )

SCO
,

START ) = ( I
,

START
,

RIGHT ) !Ix Itly I → #E :
8 ( I

,
START ) = ( O

,
START

,
RIGHT )

.

M ( 0110 ) = 1001

: M ( 1010 ) ?0101
.

 
.

The code of this Turing machine is the stringCCM) :

( C n

0 START I START RIGHT FB O HALT O HALT STAY Ff I START - .  -

and by choosing binary encodings we may assume

CCM
) e { 0,134



The Ehrhard - Regnier derivative

{ Tuning machines )
'

tuning
> { × "

MY!!!?!! , , cay.gs
,

.
. .

M I - ICM)

f . .

Ditch ) . a Di C
, { Differential A - calculus terms )

De ( Xx
. Hy .

 x ) ) . u
,

. . .

Question : what do these derivatives mean ? And what are they good for ?

• T
. Ehrhard

,
L

. Regnier
"

The differential X - calculus
" Theoretical Computer

Science 309
, p .

I - 41 ,
2003

.



A semantic approach via Linear Logic

language of closed symmetric monoidal

categories withwfveewalgebras

encode
I

I tuning machi "

nearby
":::YInbased on work v a - D

A- Girard I differential linear logic proofs } - Vega

0¥ t
~

Sweedler semantics

Ehrhard - Regnier ( based on cofreewalgebras)
derivative



Inductive Inference

• ( Informal ) Given several instances of a pattern ,
infer the pattern

• Given Ga , y , )
,

. . .

,
Gcn

, yn ) with xi
, y i E to , 135 infer an

algorithm M such that M ( sci ) = yi for I E is n
.

t
inductive : we take Mfc ) as a prediction for unobserved og

- What do we mean by
"

algorithm
" ?

- There are infinitely many such M 's ⇒ prefer simpler ones

- But what does
"

simpler
"

mean ?

- For technical reasons we may also bound M 's runtime I i.e . we

assume the pattern is effectively computable ) and allow Mlxi ) = y it
.



Inductive Inference
, formalised

• Every UTM U gives a
"

parameter's ation "

of the set of algorithms

( algorithms ) I Tuning machines } I > I o
, if

,
i. e.  codes

• Kolmogorov,
Solomon off : algorithm M is simpler than algorithm N if

I

calm
) Is
Kullu

) I

• Inductive Inference : given E = I ( a is Yi
,

ti ) ) in,
with sci

, yi E to , IT
*

and

tie IN
, find the shortest code CE { Oil )

*

such that U ( C
, ni ) ye . *

for all IS i E N
. Call any such C a solution of E

.  meaning a string
with prefix y i



Error propagation

• Inductive Inference : given E = I ( sci
, Yi

,
ti ) ) it ,

with sci
, yi E to , IT

*

and

tie IN
, find the shortest code CE to , 1)

*

such that U ( C
, ni ) Ii

ye . *

for all IE i E N
. Call any such C a solution of E

.

•

Logician 's solution enumerate codes by length and try them one - by - one !

• Probabilist 's solution view C = ( Co
, Cy . - . ) as a sequence of

distributions over { 0,1 ) and vary C so as to minimise a loss

Lk ) = In
,

Dq( Yi It D step ( C
,

sci ) ) t regular
. sati on

KL divergence
ptwpagation of uncertainty in C through UTM



Error propagation

T
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( given some method
'

LCC ) -

;
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Error propagation

• Question : how to propagate error / uncertainty through ATM ?

⑨ ①

iii.i. to nil . .

. ¢ lick - - .i

t  steps

DEI Given a finite set 2
,

let D2 { probability distributions over 2 }
.

D steph
( DE ) "xDQ > t.DE/xSQ

- [
i.  e. what should this be ?configurations

with uncertainty



• standard probability : sample from distributions representing state

and tape squares ,
run the machine fort steps , amalgamate results

IPC SylttD= E) = ?↳aP( Yott )=3xsCtI=q
'

)

state at time ttl gfqqi ) =L ? ,g ,
? )

sytmbol
under head

? tale
.

Suppose the code C = ( Co
,

Cl
,

Cz
,

.  - - ) depends on Cj  =

xj
- Ot C I - Xj ) . I

,
so

Z I axjhk) = 2
,

ay
. Dia ( Yi H D step ( C

,
xi ) ) t .

. .

= a function of II. Dsteptncc ,
xi )

Unfortunately This useless for solving the inductive inference problem !



• Naive probability we can define an alternative Sslep propagating

uncertainty through a TM
, by making certain " naive " conditional

independence hypotheses ,
e . g .Rfgftti) = e) = ?↳all?!Yott ) '3)

Rf
slttq

'

)

state attimettl gfqqi ) =L ? ,g ,
? )

sytmb
dunderhead \ tale

.

Theorem ( Clift - M ) The propagation of naive probability

Sslepm : ( SE ) "xSQ → Css )
"

XSQ

arises from the denotational semantics of linear logic ,

and the Ehrhard - Regnier derivative of M computes Tfsslepm )
.
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The Ehrhard - Regnier derivative

{ Tuning machines )
'

tuning
> { × "

MY!!!?!! , , cay.gs
,

.
. .

M 1- ICM)

I . .

Dittmar Di C
, I Differential A - calculus terms )

De ( Xx
. Hy .

 x ) ) . u
,

. . .

Question : what dogthese derivatives mean ? And what are they good for ?

t
they compute rates of  change C potentially ) program synthesis

of naive probability TL computed by Ehrhard - Regnier


