
Proof synthesis and 
differential linear logic

Daniel Murfet
based on joint work with James Clift



• J. Clift and D. Murfet, Derivatives of Turing Machines in Linear Logic, 
arXiv: 1805.11813 (gradient descent on TMs in Section 7). 

• J. Clift and D. Murfet, Encodings of Turing Machines in Linear Logic, 
arXiv: 1805.10770. 

• J. Clift and D. Murfet, Cofree coalgebras and differential linear logic, 
Mathematical Structures in Computer Science (arXiv 2017).

• D. Murfet, On Sweedler’s cofree cocommutative coalgebra, J. Pure and 
Applied Algebra, 219 (2015) 5289-5304.

• D. Murfet, Logic and linear algebra: an introduction, arXiv: 1407.2650.

therisingsea.org



101

101

2

2



Linear Logic ( sketch )

Types : A
,

B
,

C
, . . .

,
! A

,
A -613

,
A - B

,  
.

- -

, inta Cintegers )
,

binta C binary integers )
,

. . .

a ⇒

Roots : a : int A
( Church numerals )

,
form > O an integer

I : binta for any Sefo ,
I }* e . g .

5=001
.

repeat : t.binta-obin.LA

Cut - elimination is an equivalence relation on proofs

I SS
. repeat -

mint t - ÷÷⇒ji:::::"÷:::e-

prom
•

standard encodings
+ ! bint ! bint t bint in X - calculus ?

1- bint



Theoretical Computer Science 309 (2003) 1–41
www.elsevier.com/locate/tcs

Fundamental Study

The di!erential lambda-calculus
Thomas Ehrhard∗ , Laurent Regnier

Institut de Math !ematiques de Luminy, CNRS-UPR 9016, 163 Avenue de Luminy,
F-13288 Marseille, France

Received 15 June 2001; received in revised form 19 March 2003; accepted 14 July 2003
Communicated by P.L. Curien

Abstract

We present an extension of the lambda-calculus with di!erential constructions. We state and
prove some basic results (con"uence, strong normalization in the typed case), and also a theorem
relating the usual Taylor series of analysis to the linear head reduction of lambda-calculus.
c⃝ 2003 Elsevier B.V. All rights reserved.

Keywords: Lambda-calculus; Linear logic; Denotational semantics; Linear head reduction

Prerequisites. This paper assumes from the reader some basic knowledge in lambda-
calculus and an elementary (but not technical) knowledge of di!erential calculus.

Notations. Following [15], we denote by (s)t the lambda-calculus application of s to
t. The expression (s)t1 : : : tn denotes the term (· · · (s)t1 · · ·)tn when n¿1, and s when
n=0. Accordingly, if A1; : : : ; An and A are types, both expressions A1; : : : ; An→A and
A1→ · · · →An→A denote the type A1→ (· · · (An→A) · · ·). If a1; : : : ; an are elements
of some given set S, we denote by [a1; : : : ; an] the corresponding multi-set over S. If
x and y are variables, !x; y is equal to 1 if x=y and to 0 otherwise. We denote by
N+ the set of positive integers {1; 2; : : :}.

1. Introduction

1.1. Presentation

Denotational semantics vs. analysis. Denotational semantics usually interprets programs
(lambda-terms) as partial functions. Partiality is necessary to account for the case of

∗ Corresponding author.
E-mail addresses: ehrhard@iml.univ-mrs.fr (T. Ehrhard), regnier@iml.univ-mrs.fr (L. Regnier).

0304-3975/$ - see front matter c⃝ 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00392-X

Theoretical Computer Science 309 (2003) 1–41
www.elsevier.com/locate/tcs

Fundamental Study

The di!erential lambda-calculus
Thomas Ehrhard∗ , Laurent Regnier

Institut de Math !ematiques de Luminy, CNRS-UPR 9016, 163 Avenue de Luminy,
F-13288 Marseille, France

Received 15 June 2001; received in revised form 19 March 2003; accepted 14 July 2003
Communicated by P.L. Curien

Abstract

We present an extension of the lambda-calculus with di!erential constructions. We state and
prove some basic results (con"uence, strong normalization in the typed case), and also a theorem
relating the usual Taylor series of analysis to the linear head reduction of lambda-calculus.
c⃝ 2003 Elsevier B.V. All rights reserved.

Keywords: Lambda-calculus; Linear logic; Denotational semantics; Linear head reduction

Prerequisites. This paper assumes from the reader some basic knowledge in lambda-
calculus and an elementary (but not technical) knowledge of di!erential calculus.

Notations. Following [15], we denote by (s)t the lambda-calculus application of s to
t. The expression (s)t1 : : : tn denotes the term (· · · (s)t1 · · ·)tn when n¿1, and s when
n=0. Accordingly, if A1; : : : ; An and A are types, both expressions A1; : : : ; An→A and
A1→ · · · →An→A denote the type A1→ (· · · (An→A) · · ·). If a1; : : : ; an are elements
of some given set S, we denote by [a1; : : : ; an] the corresponding multi-set over S. If
x and y are variables, !x; y is equal to 1 if x=y and to 0 otherwise. We denote by
N+ the set of positive integers {1; 2; : : :}.

1. Introduction

1.1. Presentation

Denotational semantics vs. analysis. Denotational semantics usually interprets programs
(lambda-terms) as partial functions. Partiality is necessary to account for the case of

∗ Corresponding author.
E-mail addresses: ehrhard@iml.univ-mrs.fr (T. Ehrhard), regnier@iml.univ-mrs.fr (L. Regnier).

0304-3975/$ - see front matter c⃝ 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00392-X



Differential Linear Logic ( sketch )

repeat
S •

T . SI t

•

@
,

°

•

o

T I - bint ! binti - bint ~
.

I -

prom
2 T .

°

t ! bint ! bint
,

binti - bint cut - elimination .

. in  diff . linear logic t bint
t bit binti - bint -

1- bint

Let E=O bean infinitesimal ,
then

repeat ( St ET ) = ( St ET )( STET )

= Sst EST t ETS t E-  

TT

= SS t ECSTTTS )

Claim ( Ehrhard - Regnier) The  derivative of  repeat- atsin the directionIisITIS .

t
?



More precisely, let us define a pre-proof to be a rooted tree whose edges are labelled
with sequents. In order to follow the logical ordering, the tree is presented with its root
vertex (the sequent to be proven) at the bottom of the page, and we orient edges towards
the root (so downwards). The labels on incoming edges at a vertex are called hypotheses

and on the outgoing edge the conclusion. For example consider the following tree, and its
equivalent presentation in sequent calculus notation:

� ` A � ` B

�,� ` A⌦ B

� ` A � ` B
�,� ` A⌦ B

Leaves are presented in the sequent calculus notation with an empty numerator.

Definition 4.1.A proof is a pre-proof together with a compatible labelling of vertices by
deduction rules. The list of deduction rules is given in the first column of (4.2) – (4.14).
A labelling is compatible if at each vertex, the sequents labelling the incident edges match
the format displayed in the deduction rule.

In all deduction rules, the sets � and�may be empty and, in particular, the promotion
rule may be used with an empty premise. In the promotion rule, !� stands for a list of
formulas each of which is preceeded by an exponential modality, for example !A1, . . . , !An.
The diagrams on the right are string diagrams and should be ignored until Section 5. In
particular they are not the trees associated to proofs.

(Axiom):
A ` A

A

A

(4.2)

�, A,B,� ` C
(Exchange):

�, B,A,� ` C

� AB �

C

(4.3)

8

� ` A �0, A,� ` B
(Cut): cut

�0,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C
(Left ⌦): ⌦-L

�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B
(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0, A,� ` B
(Cut): cut

�0,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C
(Left ⌦): ⌦-L

�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B
(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0, A,� ` B
(Cut): cut

�0,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C
(Left ⌦): ⌦-L

�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B
(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0, A,� ` B
(Cut): cut

�0,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C
(Left ⌦): ⌦-L

�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B
(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0, B,� ` C
(Left (): ( L

�0,�, A ( B,� ` C

C

��0 � A ( B

B
A (4.8)

!� ` A(Promotion): prom

!� `!A

!A

!�

A

(4.9)

�, A,� ` B
(Dereliction): der

�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B
(Contraction): ctr

�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0, B,� ` C
(Left (): ( L

�0,�, A ( B,� ` C

C

��0 � A ( B

B
A (4.8)

!� ` A(Promotion): prom

!� `!A

!A

!�

A

(4.9)

�, A,� ` B
(Dereliction): der

�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B
(Contraction): ctr

�, !A,� ` B

B

� �!A

(4.11)

10

Deduction rules for (intuitionistic, first-order) linear logic

� ` A �0, B,� ` C
(Left (): ( L

�0,�, A ( B,� ` C

C

��0 � A ( B

B
A (4.8)

!� ` A(Promotion): prom

!� `!A

!A

!�

A

(4.9)

�, A,� ` B
(Dereliction): der

�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B
(Contraction): ctr

�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0, B,� ` C
(Left (): ( L

�0,�, A ( B,� ` C

C

��0 � A ( B

B
A (4.8)

!� ` A(Promotion): prom

!� `!A

!A

!�

A

(4.9)

�, A,� ` B
(Dereliction): der

�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B
(Contraction): ctr

�, !A,� ` B

B

� �!A

(4.11)

10

�,� ` B
(Weakening): weak

�, !A,� ` B

B

� �!A

(4.12)

�,� ` A
(Left 1): 1-L

�, 1,� ` A

B

� �1

(4.13)

(Right 1): 1-R` 1

1

1
(4.14)

Example 4.2.For any formula A let 2A denote the proof (2.4) from Section 2, which we
repeat here for the reader’s convenience:

A ` A
A ` A A ` A ( L
A,A ( A ` A

( L
A,A ( A,A ( A ` A

( R
A ( A,A ( A ` A ( A

der

!(A ( A), A ( A ` A ( A
der

!(A ( A), !(A ( A) ` A (
ctr

!(A ( A) ` A ( A
( R` intA

(4.15)

We also write 2A for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof nA of intA constructed
along similar lines, see [22, §5.3.2] and [15, §3.1].

In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write

11



More precisely, let us define a pre-proof to be a rooted tree whose edges are labelled
with sequents. In order to follow the logical ordering, the tree is presented with its root
vertex (the sequent to be proven) at the bottom of the page, and we orient edges towards
the root (so downwards). The labels on incoming edges at a vertex are called hypotheses

and on the outgoing edge the conclusion. For example consider the following tree, and its
equivalent presentation in sequent calculus notation:

� ` A � ` B

�,� ` A⌦ B

� ` A � ` B
�,� ` A⌦ B

Leaves are presented in the sequent calculus notation with an empty numerator.

Definition 4.1.A proof is a pre-proof together with a compatible labelling of vertices by
deduction rules. The list of deduction rules is given in the first column of (4.2) – (4.14).
A labelling is compatible if at each vertex, the sequents labelling the incident edges match
the format displayed in the deduction rule.

In all deduction rules, the sets � and�may be empty and, in particular, the promotion
rule may be used with an empty premise. In the promotion rule, !� stands for a list of
formulas each of which is preceeded by an exponential modality, for example !A1, . . . , !An.
The diagrams on the right are string diagrams and should be ignored until Section 5. In
particular they are not the trees associated to proofs.

(Axiom):
A ` A

A

A

(4.2)

�, A,B,� ` C
(Exchange):

�, B,A,� ` C

� AB �

C

(4.3)

8

� ` A �0, A,� ` B
(Cut): cut

�0,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C
(Left ⌦): ⌦-L

�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B
(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0, A,� ` B
(Cut): cut

�0,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C
(Left ⌦): ⌦-L

�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B
(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0, A,� ` B
(Cut): cut

�0,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C
(Left ⌦): ⌦-L

�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B
(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0, A,� ` B
(Cut): cut

�0,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C
(Left ⌦): ⌦-L

�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B
(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)

9

� ` A �0, B,� ` C
(Left (): ( L

�0,�, A ( B,� ` C

C

��0 � A ( B

B
A (4.8)

!� ` A(Promotion): prom

!� `!A

!A

!�

A

(4.9)

�, A,� ` B
(Dereliction): der

�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B
(Contraction): ctr

�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0, B,� ` C
(Left (): ( L

�0,�, A ( B,� ` C

C

��0 � A ( B

B
A (4.8)

!� ` A(Promotion): prom

!� `!A

!A

!�

A

(4.9)

�, A,� ` B
(Dereliction): der

�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B
(Contraction): ctr

�, !A,� ` B

B

� �!A

(4.11)

10

Deduction rules for (intuitionistic, first-order) linear logic

� ` A �0, B,� ` C
(Left (): ( L

�0,�, A ( B,� ` C

C

��0 � A ( B

B
A (4.8)

!� ` A(Promotion): prom

!� `!A

!A

!�

A

(4.9)

�, A,� ` B
(Dereliction): der

�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B
(Contraction): ctr

�, !A,� ` B

B

� �!A

(4.11)

10

� ` A �0, B,� ` C
(Left (): ( L

�0,�, A ( B,� ` C

C

��0 � A ( B

B
A (4.8)

!� ` A(Promotion): prom

!� `!A

!A

!�

A

(4.9)

�, A,� ` B
(Dereliction): der

�, !A,� ` B

B

� �!A

A (4.10)

�, !A, !A,� ` B
(Contraction): ctr

�, !A,� ` B

B

� �!A

(4.11)

10

�,� ` B
(Weakening): weak

�, !A,� ` B

B

� �!A

(4.12)

�,� ` A
(Left 1): 1-L

�, 1,� ` A

B

� �1

(4.13)

(Right 1): 1-R` 1

1

1
(4.14)

Example 4.2.For any formula A let 2A denote the proof (2.4) from Section 2, which we
repeat here for the reader’s convenience:

A ` A
A ` A A ` A ( L
A,A ( A ` A

( L
A,A ( A,A ( A ` A

( R
A ( A,A ( A ` A ( A

der

!(A ( A), A ( A ` A ( A
der

!(A ( A), !(A ( A) ` A (
ctr

!(A ( A) ` A ( A
( R` intA

(4.15)

We also write 2A for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof nA of intA constructed
along similar lines, see [22, §5.3.2] and [15, §3.1].

In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write

11

We match each copy of !(A ⊸ A) on the left with the corresponding position in S, and
using a series of contractions we identify all copies corresponding to a position in which
0 appears in S, and likewise all copies corresponding to positions with a 1. After these
contractions, there will be two copies of !(A ⊸ A) on the left (the first being by convention
the remnant of all the 0-associated copies) unless S contains only 0’s or only 1’s. In this
case we use further a weakening rule to introduce the “missing” !(A ⊸ A), giving finally
the desired proof SA:

compl
A

...
(A ⊸ A)l ⊢ A ⊸ A

n× der

!(A ⊸ A)l ⊢ A ⊸ A
ctr and possibly weak

!(A ⊸ A), !(A ⊸ A) ⊢ A ⊸ A
2× ⊸ R

⊢ bintA

In the final right ⊸ R introduction rules, the second copy of !(A ⊸ A) (associated with
the 1’s in S) is moved across the turnstile first. If S is the empty sequence, then l = 0
and the proof is a pair of weakenings on the left followed by the ⊸ R introduction rules.

For the rest of this section A is fixed and we write S for SA.

Example 3.10.The proof 001 is

A ⊢ A

A ⊢ A
A ⊢ A A ⊢ A ⊸ L
A,A ⊸ A ⊢ A

⊸ L
A,A ⊸ A,A ⊸ A ⊢ A

⊸ L
A,A ⊸ A,A ⊸ A,A ⊸ A ⊢ A

⊸ R
A ⊸ A,A ⊸ A,A ⊸ A ⊢ A ⊸ A

3× der
!(A ⊸ A), !(A ⊸ A), !(A ⊸ A) ⊢ A ⊸ A

ctr
!(A ⊸ A), !(A ⊸ A) ⊢ A ⊸ A

2× ⊸ R
⊢ bintA

where the colouring indicates which copies of !(A ⊸ A) are contracted. Using (18),

!001"
!
|∅〉γ ⊗ |∅〉δ

"
= !comp3

A
"
!
|∅〉γ ⊗ |∅〉γ ⊗ |∅〉δ

"
= δ ◦ γ ◦ γ . (21)

Generalising the calculation of Section 3.1 we now describe the derivatives of binary
integers. The general formula computes, for S ∈ {0, 1}∗, the linear operator

!S"
!
|α1, . . . ,αr〉γ ⊗ |β1, . . . , βs〉δ

"
∈ Endk(V ) .

Informally, this operator is described by inserting γ for 0 and δ for 1 in (the reversal of)
S, and then summing over all ways of replacing r of the γ’s in this composite with αi’s,
and t of the δ’s with βj’s. Let Inj(P,Q) denote the set of injective functions P −→ Q,
and write [s] = {1, . . . , s}.

13

001 : bintA = !(A ( A) ( (!(A ( A) ( (A ( A))



!E ` !E
!E ` !E

!E ` !E
!E ` !E

comp2
A

.

.

.

E, E ` E
( L

!E, !E ( E,E ` E
( L

!E, !E,bintA, E ` E
( L

!E, !E, !E,bintA, !E ( E ` E
( L

!E, !E, !E, !E,bintA,bintA ` E
ctr

!E, !E, !E,bintA,bintA ` E
ctr

!E, !E,bintA,bintA ` E
2⇥ ( R

bintA,bintA ` bintA
2⇥ der

!bintA, !bintA ` bintA
ctr

!bintA ` bintA

which repeats a binary sequence in the sense that the cutting it against the promotion of
S is equivalent under cut-elimination to SS. In particular, JrepeatK|;iJSK = JSSK.

Given S, T 2 {0, 1}⇤ the derivative of repeat at S in the direction of T is

JrepeatK|JT KiJSK 2 JbintAK = Homk(! Endk(V )⌦ ! Endk(V ),Endk(V )) , (23)

and as promised in the Introduction:

Lemma 3.14. JrepeatK|JT KiJSK = JST K + JTSK.

Proof. The value of the left-hand side on a tensor |↵1, . . . ,↵si�⌦ |�1, . . . , �ri� is computed
by reading the proof-tree for repeat from bottom to top:

|JT KiJSK
ctr

7����! |JT KiJSK ⌦ |;iJSK + |;iJSK ⌦ |JT KiJSK
2⇥ der
7����! JT K ⌦ JSK + JSK ⌦ JT K
2⇥R (
7����! |↵1, . . . ,↵si� ⌦ |�1, . . . , �ri� ⌦

�
JT K ⌦ JSK + JSK ⌦ JT K

�

2⇥ ctr
7����!

X

I,J

|↵Ii� ⌦ |�Ji� ⌦ |↵Ici� ⌦ |�Jci� ⌦
�
JT K ⌦ JSK + JSK ⌦ JT K

�

7����!

X

I,J

JSK
�
|↵Ii� ⌦ |�Ji�

�
� JT K

�
|↵Ici� ⌦ |�Jci�

�

+
X

I,J

JT K
�
|↵Ii� ⌦ |�Ji�

�
� JSK

�
|↵Ici� ⌦ |�Jci�

�

which agrees with JST K + JTSK on |↵1, . . . ,↵si� ⌦ |�1, . . . , �ri� by Lemma 3.11.

15

From now on A is fixed and we write n for nA. Let V = JAK so JA ( AK = Endk(V ).
In the notation of Remark 2.11, there is a function

JnKnl : Endk(V ) �! Endk(V ) . (19)

Lemma 3.6. For n � 0 and ↵ 2 Endk(V ), we have JnK|;i↵ = ↵
n so JnKnl(↵) = ↵

n.

Proof. This is an easy exercise, see [26] for the case n = 2.

The derivative @ n of Definition 2.10 is a proof of !(A ( A), A ( A ` A ( A and
for ↵, ⌫ 2 Endk(V ) the value of its denotation J@ nK = JnK � D on |;i↵ ⌦ ⌫, that is, the
derivative of n at ↵ in the direction of ⌫, is JnK|⌫i↵.

Lemma 3.7. JnK|⌫i↵ =
Pn

i=1 ↵
i�1

⌫↵
n�i.

Proof. This may be computed using the formulas of [26, p.19]. For example, in the case
n = 2 the image of |⌫i↵ under JnK is given by

|⌫i↵
ctr

7����! |⌫i↵ ⌦ |;i↵ + |;i↵ ⌦ |⌫i↵

2⇥ der
7����! ⌫ ⌦ ↵ + ↵⌦ ⌫

� � �
7����! ↵ � ⌫ + ⌫ � ↵ ,

as claimed.

Remark 3.8.When k = C, V is r-dimensional and ' = JnKnl, the vector JnK|⌫i↵ agrees
with the image of ⌫ under the usual tangent map of the smooth map '

Mr(C) ⇠= T↵ Endk(V )
T↵' // T↵n Endk(V ) ⇠= Mr(C) .

This justifies in this case the interpretation of JnK|⌫i↵ as the derivative.

3.2 Binary integers

Definition 3.9.The type of binary integers on A [15, §2.5.3] is:

bintA = !(A ( A) ( (!(A ( A) ( (A ( A)).

Given a sequence S 2 {0, 1}⇤ we define a proof SA of bintA as follows. Let l � 0 be the
length of S. The proof tree for SA matches that of the Church numeral l up to the step
where we perform contractions, that is,

compl
A

.

.

.

(A ( A)l ` A ( A
n⇥ der

!(A ( A)l ` A ( A

(20)

12

E = A ( A

repeat : !bintA ( bintA



Sweedler semantics

E- I] : LL → Vectis

( than  algebraically closed field )

EA - o B D= Homie ( ( IAD
,

d BB ) cut  = composition
Contraction = co multiplication

If  dim CIA D= m
,

dim GB D= n weakening =  co unit

this  is the space of nxm matrices
.

TL

" a . ' ' = " " " B '
I ;÷÷÷

.
. . .

)
- II:÷Ihn:÷÷:m

Dimension Mn
, spanned by a below commute

basis Uia Vj where ( Uilii
,

( vjljnI are bases for CLAD
,

A BD
.

y

Gi .
T D - - - → a ! AD

I ! A D= Ot
peep g Sym ( A AD ) I universal

X

E
GADCofreewcom mutative co algebra over GAD

,

studied by Sure edler
.

( see
" Co free w algebras and differential LL

" )



Differentiating Turing Machines

language of closed symmetric monoidal

categories withwfveewalgebras

encode

I
G- DI tuning machi Hi

nearby
"::O:L!based on work v a - D x

Fainted I differential linear logic proofs } - Veche

tPUT
Sweedler semantics

Ehrhard - Regnier ( based on cofreew algebras )
derivative

QUESTION : What does the derivative ofa Turing Machine compute ?



Differentiating Turing Machines

How to make infinitesimal changes to discrete inputs ?

Turing machine

0110 → I M } → 1001
"

swapper
"

Pi Pa Ps P4 91 92 93 94

I
1

of IoT
I M }

of IoT
x y

III.
 ⇒

= Ell - a) be
 ⇒

=
- I

If we propagate uncertainty using standard probability ,
answers

are independent - of the algorithm and therefore meaningless .



Differentiating Turing Machines

How to propagate uncertainty through an algorithm ?

Use the Sweedler semantics ?

Naive probabilistic

X
,

Xz Xs Xy → I
extension

of ) → Y
,

Yz Ys Ya
,

It steps)

x=P(Xz=o ) y=P( YEO )

→ is computed by the Ehrhard - Regnier derivative
Jxl×=o

of the t - step function of the encoding of M
.

QUESTION : What does the derivative of a Tuning Machine compute ?

ANswER_ : Rates of change of naive probability .



Proof Synthesis TM synthesis

PR0BLEM_ Given U : A and v :B find TL : ! A -013 s . t.IT/u)=v .

( usually for multiple pairs , subject to "

regulars's ation
"

i.  e. simplicity of IT )

input  →

{ universal:b} → output
code → .

Tuning Machine synthesis by gradient descent :

Frarydistributions over code bits E [ 0
, D

"

to minimise

a smooth loss function L :[ O
, DN -3 IR

.

-1



w1
w2

solution of inductive 
inference problem

initial distribution 
over proofs

gradient descent using Ehrhard-Regnier derivatives



T

i :
-

I
::i:*:*:*:

f÷f
i -

=
'

'

'

" t
'

:÷÷÷i÷m÷H÷i÷÷
: :

- - of  distributions ) -

I -0
> - KL -

1-

is ⇐⇐i :
' '

LCC )=
;

Dalyell pi ) t . .
.

c) ! ii
} C

Dalal p ) - if ,9ilnl9Ypi )
i i

⇐El
pig distributions on { oil }

.







•

synthesis by gradient descent works in toy examples ,

but  is

unlikely to work in nontrivial examples ( explosion of local minima
,

it seems Occam 's razor is not a sufficiently strong prior in the continuous regime )
.

• similar methods of propagating uncertainty through algorithms

have arisen C in an ad hoc way ) in the machine learning literature :

• ( DeepMind ) R
.

Evans
,

E
. Grefenstette "

Learning explanatory

rules from noisy data
"

Journal of AI Research 61 ( 2018 ) I - 64 .

• I Microsoft ) A. a aunt et
.

at
"

Ter put : a probabilistic programming

language for program induction
"

2016 .



CONCLUSION

① Proofs in linear logic admit a derivative ( Ehrhard - Regnier )

② These derivatives compute ( for  certain proofs ) rates of change

of naive probability ( Clift - M )
.

③ One can do proof synthesis by gradient descent
, using loss

functions defined on spaces of distributions over proofs

( although this is not currently practical ! )
.

the rising sea . org


