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The Curry
- Howard principle p@

The Curry
- Howard principle says

that pwofttty and the theory of computation

are two viewpoints on the same underlying mathematical objects - called

pat
on

the one hand and 1¥on the other [ su ]
.

This was made explicit in work of

Curry
'

58 and Howard
'

69 but an important component of the basic philosophy

goes
back to Brouwer

, Heyting and kolmogowv ( BHK ) .

As was recalled in Shawn 's

first lecture
,

BHK take "
the view that what we unite as a proof is merely a description

of something which is already a process in itself
"

[G
,

51.22 ]
.

More concretely
,

a proof

of A  → B should
give rise to a transformation from proofs of A to proofs of B

.

If proofs are transformations
,

it makes sense to ask if two proofs of A  → B
give rise

to the same transformation .

In this
way

the BHK interpretation ,
white a simple idea

,

suggests a found break from traditional logic with its focus on provability ( does a

proof
existsTowards

a study of proofs as mathematical objects ,
in their own right .

Now
,

it is
easy

to miss the point here
,

since one might imagine that one knout
"

what a proof is
"

by virtue of experience writing pwof in
e.g. geometry .

But while such experience confers

knowledge of pwvatty it often very
little insight to the true nature of proofs ( whatever that

might be ) . Perhaps linear logic or homotopy type theory illustrate this point most forcefully .

this isn't so surprising
: by way of analogy ,

it  is easier to
agree on what it means for a

function to be a solution of a differential equation ( i.e. provability ) than to
agree on the

"
true nature

"

of a differential equation ,

which requires relatively sophisticated differential

geometry using the language of jet bundles [ s ] or algebraic geometry in the language

of D- modules ( even the nature of polynomial equations was arguably only settled by

Gwthendieck in [ EGAI ] )
.

So far we (arguably ) lack similarly satisfying answers to

the question
"

what is a proof ?
"

.
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However
,

while we may not know what proofs
"

are
"

,
we do have a first step

:
a bijection

between (doled) proofs in natural deduction and ( closed ) Herms in simply
-

typed t - calculus
.

This  is often called the Curry
- Howard correspondence ( we use

"

correspondence
"

to name this

particular result and
"

principle
"

to denote the broader philosophy which it inspires )
.

this

bijection achieves l in some limited
,

but suggestive way ) a realisation of proofs as processes
:

namely X - terms under f reduction to normal form
.

The purpose of today's lecture is to
prove

the Curry - Howard correspondence .

Reference

a ] IY
. Girard

' '

Proof and types
"

Chapter 3

[ Nvp ] Negri ,
Von Plato

"

structural pwof theory
" § 1.2 and § 8.1 particularly .

[ aa ] Gallier
"

On the correspondence between pwuG and lambda terms
"

[ SU ] Sorensen
, Urzyczyn

' '

Lectures on the Curry
- Howard isomorphism

"

[ s ] Saunders
,

"

the geometry of jet bundles
"

[ M ] Martin - Lot
"

On the meanings of the logical constants and the justifications

of the logical laws
' '

.

[ EGAI ] A
. Gwthendieck

,
see tensing for a translation

.

Natural Deduction

There are various systems called
"

natural deduction
"

,
see [ Gips ]

,

[ NVPT and Shawn 's

talk for some historical background on why .

In
any case

,
while these systems might all

agree

on

which
propositions are pwvablt they genuinely dilfer in their

opinions about what

a proof is .

We must choose the connect system
to

get abjection with t - calculus .
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The systems all have the same language : an infinite set of propositional variables
p ,q ,

r
,

...

and formulas Y→Y whenever YY are formulas ( all variables are formulas )
.

Systems As presented in [ SD is about sequin ( judgments )
TTY

where Yisa formula

and Tisa finitesof formulas
.

The  deduction rules are

T
,

YTY ( Ax ) ( T
any

set not containing Y )

T ,YtY ( Tang set not containing Y )
- ( →I )

( 3.1 )

Tty
- T - 4 TTY ( T

any
set )

- HE )

TTY

The reasonwe need PYTY and not just YTY as axioms fovtuoveasons :
 it is how

we simulate the left introduction of  → in sequent calculus
,

and it enables weakening

( the introduction of spurious dependencies )
.

But this is quite a defective system .

Examp1= Is 9,4 tT→Y
provable?Certainly YtT→Y is

,

4,9¥
- →I ( 3.2 )

4+9+4

Butifwewanttoweakeninawpy off
,

we hitthefactlhat Tin T
,

4+4

hantobeaset nota multi .

similar ( but even worse ) problems arise when

wetytoenwde standard A- Hvmsaspwofs ( e.g. Church numerals )
.

this version

of natural deduction
" conflates too

many pwoh
"

.



pet0

We could make T - { Yi 's
. . .

s
Yn

"
"

} a multi set
,

for aid I and adopt a variation of  →I

Yin
,

,
. .

,
yin +4

-
→  I ( 4.1 )

yin
,

, . , ,yli 't . ih
"

+%→4

Or equivalently we can write
e.g.

93 as 04
: 9

,
xz :L as if and work

up
to d- equivalence .

This leads ( almost ) to " standard
"

natural deduction as in [ a ] or [ NVP
,

91.358 . D
.

Systems We add an infinite collection of variables Yg for each formula Y
, writing

x
: Y for XEYY

. Sequent are TTY where Y is a formula and T is a

finite set of variables
.

For convenience we write { xy . .
- ixn } as

T = { x
,

:P
, ,

. .
.

,
an

'

. Yn } ( 4.2 )

where xi C- Ysi
.

The notation T
,

x : A is only well - defined if xtxi all i
,

in which case it denotes TU { ' ' } ZT .
The rules are

:

T
,

x : Y TY ( Ax )

T.sc:9#yI
, 14.3 )

T t Y →YuitTt
HE )

T +4

A pretvof of Tty is a tree with rules for vertices
,

axioms for leaves and

T +4 as the conclusion of the final rule
. Apw# is an d- equivalence class

of picks ( a- equivalence means simultaneous renaming of all ~ - related
.

.

copies of a variable ,
in the sense made precise overleaf )

.
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 occurrences of Yinthepwof
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Example c :Y,y :Y
,

z :YtY
-  

=
Y

,
z :YtY→X

D& An occurrent of

avaniablexinaprepwofisavaaableinthewnlextlof

asequentinsomemkofthepwofwedefineaoelationneonoccuwenusofx

tobethe smallest equivalence relation generated

: -

tT→4 Tts
• seltingthethneeoccumenurofxin -

Tt 4 C 5.1 )
to

beoelaledwheneuerxet

,

T
,

Ytt
• seltingthetuooccumenusofxin -Y"tobevelaled

,

whevexet
.

T :Y→4

Examp1= Consider the proof,
for T

- { f :T→Y,x :p }

Tty - 9

TX →E )

Tty→y Tty
( →E )

P : - f :y→Y,x:YtY ( 5.1 )

f :y→y+y→y

t(y→y)→H→y )

Hevealltheoccumenesoffare equivalent under ~ ( respa
's )

.

.

Examplt Consider the

pw:yield
,f

:Y→YtY,→[,x@y#tTy#t(y→Y)→ly→4)y@t-Y→4y#t9→Y
Herealloccumenusofyare - equivalent butthetuox 's anenot equivalent .



Deft we while < T > : - { Yi
'

,
.

.
. ihi

"

} if the variables occurring in T belong to p@

Yqu . . . u Ygn ( and no smaller union ) and exactly ai elements of T lie  in Y%
.

�6�

Lemmas There is abjection between System I pwvfs of Ttf

and proofs of < T > + Y
using rule 14.1 )

, togetherness a
"

good
"

partition of the occurrences of every formula 4
appearing

in the context

of a sequent in the pwot

,
re .

$4,09
→ 4+4

0940+4@+ H→y)→ly→4 )40+9+4 .@ty→y
there

we
mile

49=14!, ,y

"

as
separate

and
distinguishable

copies off .

Remade Here
' '

good
"

means that the partition P consists of sets Q satisfying

• Q contains at most one 4 in each sequent

. Q contains a 4 in both T 's of the numerator of a → ⇐ mle #f .

it contains a Y in the denominator
.

• if Y is not the active formula in a → 't rule then Q contains a 4

in the numerator i⇐ it contains one in the denominator
.

•

if 4 is active in → I then
among

the sets Q of the partition there

is a unique one which contains a X in the numerator but not the

denominator ( so therest contain a Y in the denominator ) .

Moreover
,

we consider partitions up to permutation of the copies of Yin each sequent .

Not Thus a System II proof is a proof with multi sets of hypotheses and a concept of

"

identity
"

for these hypotheses .

A good partition is equivalent to package labels t

discharge labels in the usual sense for natural deduction proofs which are closed

re . all hypotheses are discharged ( hole that in a natural deduction proof we

may
introduce A  → B

discharging no hypothesis : to construct the wwesp
.

System I proof a new wpy of A needs to be explicitly propagated from the

node of the introduction rule upwards to all the
' '

downstream
"

leaves )
.
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[ From now on
,

we say
"

natural deduction
"

or ND for
"

system I
"

]

We
may identify the set of formulas of ND with the set E→ of simple types in 7 - calculus

.

theorem ( Curry
- Howard ) For

any YEE → there is abijection between ND

proofs of t Y and closed Xlerms of type Y
.

Roof Basically a tautology .
The typing constraints say

: M is of type Y it  it can be

constricted by the typing rules

@ @

@ T
,

x
" 8 t M : J T t M : 8 → J T + N : Z

T
,

x
: T t x

: J
-

Tt ( Xx : M ) : 6 ' J T t ( M N ) : J

Given a proof P

of
+9in ND apply the construction rules @

, 8,0 in the same order

as Ax
,

→ I
,

→E to construct a doled 7- term of the same type Y
.

It is clearly a swjective map

on

.to
,

closed 7- terms .

To
pwveinjecting

we have to
argue every 7 - term f- aequiy class ) has

e4cHyo# justification via @
,

QQ for  its type .
But as the stricture of the X - term dictates

each of the rules and their order
,

and d- equivalence does not affect the RHS of the proof

structure ( here we use that the term is closed ) this is clear
. D

Examples The Church numeral 2- = if
"

? hx ? ( f ( f  x ) )
comes from P of ( 5.1 )

.

Remavtt Let P be a proof of to with corresponding closed X - term M
.

A f- redex

in M
, say

( ( Rod
. M

'

) N
'

) corresponds to a part of P of the form

(hole M
,

N
may

not be closed
,

so we define this
"

part
"

via the axtonM tP )

R

:
.

Pz

T
,

x :b t  
J i. ( 7.1 )

→ I

T t 6→J T t Z

→ E

T : J
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Such subpwofs consisting of an introduction followed immediately by an elimination

are called detours in the literature on natural deduction
. Intuitively it seems obvious

we should be able to constrict a proof of T t
 
J without using the hypothesis x : A

.
Indeed

,

if we look at P
,

the leaves must be labelled

T
'

,

D
,

xi 6
, y

:OTO
or T

,

D
,

x

:b
+ 6

where ytx and either T
 =P

'

or T
 

= T
'

, y:O .

We can form a new deduction for

T t J as follows : in P
,

whenever a leaf of the form T
,

D
,

x : 8 +8 occurs
,

replace it by the deduction obtained from Pz by adding D to the premise of each

sequent in Pz (possibly with variable
renaming

to
preserve multiplicities ) . Finally ,

delete the assumption x : 8 from the premise of every sequent in the resulting pwof

( this includes the x
" 8 in T

'

,

A
,

x : 8
, y

:O TO which were
anyway never used )

.

The resulting proof
,

which we may
denote R [ Pzlx ] is clearly a kind of

substitution
.

Lemme P
, [ Pzlx ] corresponds total -

step p
- reduction of M at the

given

red ex .

Root By induction on the structure of M
. D

U#ot Under Curry - Howard B - reduction corresponds to detour elimination .

This notion of detour elimination was introduced and studied independently in the

natural deduction literature
,

but we can use CH ( =

Curry
- Howard ) to deduce the

basic results from theorems we have already proven about X - calculus
.

D# Let
 ± denote the equivalence relation on the set of proofs of IT generated

( in an appropriate sense
,

re . closed under → I and → E) by detour elimination
.
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theorem Let P
,

P
'

be proof of IT with corresponding Xlevms MM ! Then

p ± P
'

# M =p M ! 19.1 )

Corollary Every
± -

equivalence class of proofs of IT contains a unique detour - free proof .

Pwot By Church - Rosser and strong normalisation for 7 - calculus . D

This is somewhat remarkable :

anything provable in ND can be proven withouttng

ModusPon= ! ( ie .
 → ⇐ )

.

We also observe that there are

genuinelydilferentpwofsof the same formula in ND
,

which differ in their pattern of hypothesis usage .

Fxamp1= Each Church numeral a gives a pwof Pn of t ( Y→y)→(y→y )

and Pn ¥ Pm whenever Mtn .

Returning to the general Curry - Howard principle discussed at the beginning of

the lecture
,

we can
say

that the deeper reason that we wish to distinguish between

proofs of the same formula is that we view proofs as transformations
,

and Pn

determines a different transformation of  its inputs ( a proof of tY→Y ) to

its outputs ( another proof of tY→Y )
.

This point is made most clearly using

the category L of simply
- typed X - terms discussed in

my
earlier lecture

.

Let Lc ( c for  closed ) denote the subcategory with the same objects as L but

only those morph isms M with FVP ( M ) - $ .

Then

Left
,

T→Y ) =

My
→ , /=pz

± { proofs of tfis } / = +2

Lds→Y
,

T→Y
) -

Act
, , )→*,y ) / =pz

±

{ proof of this )→H→Y ) } 1=+2
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Using this category we can be more precise about the transformation determined by

apwofp of t ( YtY)→H→T )
.

If M is the corresponding 7 - term
,

it is the function

L
.
( 11

,

is - Y ) ¥ L. ( 1
,

T→Y )

1  110.1 )
/ \

am→y ) #
( y→y )

and
, finally

,
if Mtn then Pm and Pn determine different functions in ( 10.1 )

for a generic Y
.

✓
says xctt below

Remarks Z - equivalence
,

re . Dk. ( Mx ) ~M for  XEIFV ( M ) corresponds to

"

"

- ax
!

T
,

x :b t2→JT
,

x
: 8

. → E ~

T
,

x
: 8 t J T

,
z : 8th

→
I

T t 8 → J

Regarding the relevant of the Curry
- Howard correspondence we leave the last

word to Girard from [ a
,

§ 3.6 ]
.
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3.6 Relevance of the isomorphism

Strictly speaking, what was defined in 3.5 is a bijection. We cannot say it is
an isomorphism: this requires that structures of the same kind already exist on
either side.

In fact the tradition of normalisation exists independently for natural deduction:
a proof is normal when it does not contain any sequence of an introduction and
an elimination rule:

···
A

···
B
^I

A ^B
^1E

A

···
A

···
B
^I

A ^B
^2E

B

···
A

[A]
···
B

)I
A) B

)E
B

For each of these configurations, it is possible to define a notion of conversion.
In chapter 2, we identified deductions by the word “equals”; we now consider
these identifications as rewriting, the left member of the equality being rewritten
to the right one.

That we have an isomorphism follows from the fact that, modulo the bijection
we have already introduced, the notions of conversion, normality and reduction
introduced in the two cases (and independently, from the historical viewpoint)
correspond perfectly. In particular the normal form theorem we announced in 3.4
has an exact counterpart in natural deduction. We shall discuss the analogue of
head normal forms in section 10.3.1.

Having said this, the interest in an isomorphism lies in a di↵erence between
the two participants, otherwise what is the point of it? In the case which interests
us, the functional side possesses an operational aspect alien to formal proofs.
The proof side is distinguished by its logical aspect, a priori alien to algorithmic
considerations.

The comparison of the two alien viewpoints has some deep consequences from
a methodological point of view (technically none, seen at the weak technical level
of the two traditions):

• All good (constructive) logic must have an operational side.

• Conversely, one cannot work with typed calculi without regard to the implicit
symmetries, which are those of Logic. In general, the “improvements” of
typing based on logical atrocities do not work.
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Basically, the two sides of the isomorphism are undoubtedly the the same
object, accidentally represented in two di↵erent ways. It seems, in the light of
recent work, that the “proof” aspect is less tied to contingent intuitions, and is
the way in which one should study algorithms. The functional aspect is more
eloquent, more immediate, and should be kept to a heuristic rôle.


