
1 Linear codes

Suppose we wish to transmit words of length k. In order to correct for errors, we
will pad each word by n− k additional bits, and therefore transmit words of length n.

Definition 1.1. A linear code C of length n and rank k is a k-dimensional subspace
of Fn

2 .

Associated to any linear code are two matrices, which we now define.

Definition 1.2. The code generator matrix G is an n×k matrix such that if v ∈ Fk
2

is an unencoded word, then Gv ∈ Fn
2 is the corresponding encoded word.

Definition 1.3. A parity-check matrix H is an (n− k)× n matrix with kerH = C.

Definition 1.4. Let x ∈ Fn
2 . The Hamming weight of x is the number of non-zero

entries; we denote this by ‖x‖. If x, y ∈ Fn
2 , we define the Hamming distance between

x and y as ‖x− y‖.
Let C be a linear code, and let d > 0 be the minimal Hamming weight amongst

non-zero codewords of C. Observe that this is equal to the minimal Hamming distance
between any two distinct codewords of C, since C is a subspace.

Suppose that we send a codeword c, but an error in transmission causes the word
w ∈ Fn

2 to be received instead. If w satisfies 0 < ‖w − c‖ < d, then we know that an
error has occurred, since the word w cannot be a codeword. Moreover, if we assume
that 0 < ‖w − c‖ < bd/2c, then we can correct the error by finding the closest word in
C to w, which is c.

We now provide perhaps the most well known example of a linear code.

Example 1.5. The Hamming (7,4) code is a linear code with matrices

G =



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

Encoding. Suppose we would like to send the word v = (v1, v2, v3, v4). We calculate
the encoded word c given by

c = Gv = (p1, p2, v1, p3, v2, v3, v4),

where

p1 = v1 + v2 + v4,

p2 = v1 + v3 + v4, (∗)
p3 = v2 + v3 + v4.
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We transmit the word c.
Before we describe the decoding process, we first note the following important prop-

erty of the code.

Lemma 1.6. If c ∈ C is non-zero, then ‖c‖ ≥ 3. Hence the Hamming encoding can
detect up to two errors, and correct up to one error.

Proof. Suppose c = (p1, p2, v1, p3, v2, v3, v4) ∈ C. If all of the vi are 0, then each pi = 0
as well so c = 0. If exactly one of vi is 1, then by (∗) at least two of the pi are 1 as well,
so ‖c‖ ≥ 3. If exactly two of the vi are 1, then again by (∗) at least one of the pi is 1,
so ‖c‖ ≥ 3. Lastly, if three or more of the vi are 1, then clearly ‖c‖ ≥ 3.

Decoding. Suppose we receive the word w. In order to determine if errors have
occurred, we compute the vector s = Hw.

Case 0, no errors: If s = 0 then w ∈ C, so there is no error.
Case 1, one error: If s 6= 0, then we assume that one error occurred. Note that this

implies that w = c + e, where e is a vector with all entries 0, except for a 1 where the
error occurred, say in position i. Hence

s = Hw = Hc+He = He

since Hc = 0 as c is a codeword. Since the only non-zero entry of e is in position i, the
product He will be equal to the ith column of H. Thus we can determine the location
of the error by inspection of Hw.

Case 2, two errors: Note that if two errors occur, we will still be able to detect the
presence of an error, since the valid codewords are spaced by Hamming distance at least
three. However, if we try to correct the error as in case 1 we will compute an incorrect
answer, as the closest valid codeword is no longer correct. If three or more errors occur,
it is possible that we will be unable to even detect the presence of an error.

2 BCH codes

BCH codes, named after their inventors Bose, Ray-Chaudhuri and Hocquenghem,
are a family of multiple-error correcting codes. In order to describe them, we will
require some basic theory of finite fields.

Definition 2.1. For each prime p, the set of integers modulo p forms a field Fp. For
each prime p and each n ∈ N there is a unique field of order pn denoted Fpn , which can
be realised as the quotient

Fpn = Fp[x]/(f)

where f is an irreducible polynomial of degree n in Fp[x]. Note that Fp is a subfield of
Fpn .
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Equivalence Binary
Element class notation

0 0 0000
1 1 0001
α x 0010
α2 x2 0100
α3 x3 1000
α4 x+ 1 0011
α5 x2 + x 0110
α6 x3 + x2 1100
α7 x3 + x+ 1 1011
α8 x2 + 1 0101
α9 x3 + x 1010
α10 x2 + x+ 1 0111
α11 x3 + x2 + x 1110
α12 x3 + x2 + x+ 1 1111
α13 x3 + x2 + 1 1101
α14 x3 + 1 1001

Table 1: Elements of the field F16 = F2[x]/(x4 + x+ 1).

Definition 2.2. Let F ⊆ E be fields, and α ∈ E. The minimal polynomial of α
over F, if it exists, is the unique monic polynomial m ∈ F[x] of lowest degree such that
m(α) = 0.

Note that for finite fields, minimal polynomials always exist.

Definition 2.3. If F is a finite field, then F× is cyclic. We say that α ∈ F is a primitive
root if it generates the group F×.

We now describe a BCH code which is capable of correcting two errors, by adding
8 parity-check digits to form encoded words of length 15. The polynomial m(x) =
x4 + x + 1 is irreducible in F2[x]. To see this, note that it has no linear factors, and
is also not divisible by x2 + x + 1, which is the only irreducible quadratic polynomial
in F2[x]. Hence F16 = F2[x]/(x4 + x + 1) is a field with 16 elements. Let α be the
equivalence class of x; by definition, the minimal polynomial of α is m. Note that α is
primitive in F16.

Lemma 2.4. The minimal polynomial of α3 over F2 is m3(x) = x4 + x3 + x2 + x+ 1.

Proof. The polynomial m3(x) is irreducible, as it is not divisible by x, x+1 or x2+x+1.
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Using the fact that α4 = α + 1, we compute

m3(α
3) = α12 + α9 + α6 + α3 + 1

= (α + 1)3 + α(α + 1)2 + α2(α + 1) + α3 + 1

= (α3 + α2 + α + 1) + (α3 + α) + (α3 + α2) + α3 + 1

= 0.

An immediate consequence is that the polynomial in F2[x] of smallest degree with
both α and α3 as roots is

g(x) = m(x)m3(x) = x8 + x7 + x6 + x4 + 1.

In fact, this polynomial also has α2 and α4 as roots, since for any polynomial in F2[x]
we have p(x2) = p(x)2.

The set of codewords is

C =
{

(c14, ..., c0) ∈ F15
2 | g divides c14x

14 + c13x
13 + ...+ c1x+ c0

}
.

Encoding. Suppose we wish to encode the 7-bit word

v = (v14, v13, ..., v8).

Let v(x) be the polynomial

v(x) = v14x
14 + v13x

13 + ...+ v8x
8,

and perform Euclidean division by g(x), so that v(x) = q(x)g(x) + r(x), and hence
v(x) + r(x) = q(x)g(x). Since r has degree at most 7, we can write

v(x) + r(x) = v14x
14 + v13x

13 + ...+ v8x
8 + r7x

7 + r6x
6 + ...+ r1x+ r0.

Since g divides v + r, we know that

c = (v14, ..., v8, r7, ..., r0) ∈ C.

We transmit c.

Decoding. Suppose we receive a word w with associated polynomial w(x). We can
write w(x) = c(x) + e(x) for some polynomial e of degree at most 15. We assume that
at most two errors occurred during transmission, and hence at most two coefficients in
e(x) are non-zero.

To begin decoding, we first calculate si = w(αi) for 1 ≤ i ≤ 4. Note that since
c(αi) = 0, we have si = e(αi). Form the matrix

S =

[
s1 s2
s2 s3

]
.
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We will see that the rank of S is equal to the number of errors which occurred.
Case 0, no errors: If no errors occurred, then each si = 0. So α, α2, α3 and α4 are

all roots of w, and hence w ∈ C.
Case 1, one error: If one error occurred, then e(x) = xa for some 0 ≤ a ≤ 14.

Hence

S =

[
αa α2a

α2a α3a

]
which has rank 1. Moreover, we can determine where the error occurred by comparing
to Table 1; since s1 = αa, we know that the error occurred in the bit corresponding to
the coefficient of xa in w(x).

Case 2, two errors: If two errors occurred, then e(x) = xa + xb and hence

S =

[
αa + αb α2a + α2b

α2a + α2b α3a + α3b

]
Hence detS = αa+3b + α3a+b. Note that this determinint cannot be zero, since this
would require a+ 3b ≡ 3a+ b modulo 15 and thus a ≡ b. So rankS = 2.

To determine the locations of the errors, we solve the linear system

S

[
σ0
σ1

]
=

[
s3
s4

]
. (∗)

The reason for this is that it will turn out that the roots of x2 + σ1x+ σ0 are precisely
αa and αb, so by consulting Table 1 again we can find both errors. We will prove this
in the next section.

Example 2.5. Suppose we wish to transmit the word v = (1, 1, 0, 1, 0, 1, 0). We have

x14 + x13 + x11 + x9︸ ︷︷ ︸
v(x)

= (x6 + x4 + x)︸ ︷︷ ︸
q(x)

(x8 + x7 + x6 + x4 + 1)︸ ︷︷ ︸
g(x)

+ (x7 + x6 + x5 + x4 + x)︸ ︷︷ ︸
r(x)

,

and thus we transmit the word

c = (1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0).

Suppose that we instead receive the word

w = (1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0).

The error polynomial is e(x) = x11 + x4, but we don’t yet know this. Using Table 1,
we compute

s1 = w(α) = α14 + α13 + α9 + α7 + α6 + α5 + α = α13

s2 = w(α2) = α28 + α26 + α18 + α14 + α12 + α10 + α2 = α11

s3 = w(α3) = α42 + α39 + α27 + α21 + α18 + α15 + α3 = α10

s4 = w(α4) = α56 + α52 + α36 + α28 + α24 + α20 + α4 = α7.
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Hence

S =

[
s1 s2
s2 s3

]
=

[
α13 α11

α11 α10

]
,

which has rank 2. The inverse of S is

S−1 =
1

α23 + α22

[
α10 α11

α11 α13

]
= α−11

[
α10 α11

α11 α13

]
=

[
α14 1
1 α2

]
.

Hence the solution to the linear system (∗) is[
σ0
σ1

]
= S−1

[
s3
s4

]
=

[
α14 1
1 α2

] [
α10

α7

]
=

[
α24 + α7

α10 + α9

]
=

[
1
α13

]
.

Consider the polynomial p(x) = x2 + σ1x+ σ0 = x2 + α13x+ 1. Note that

p(α4) = α8 + α17 + 1 = 0, and

p(α11) = α22 + α24 + 1 = 0.

Hence we conclude the errors occurred in bits which correspond to the coefficients of
x4 and x11, which is correct.

3 General BCH codes

Let m ≥ 3 and t < 2m−1 be positive integers. In this section we will prove that
there exists a binary BCH code C with

• block length n = 2m − 1,

• minimum distance d ≥ 2t+ 1,

• number of parity-check digits n− k ≤ mt.

Hence C can correct at most t errors.
Let F = F2m , and let α ∈ F be a primitive element. Let g ∈ F2[x] be the unique

polynomial of lowest degree with α, α2, ..., α2t as roots. We can compute g by taking
the least common multiple of the minimal polynomials of α, α3, ..., α2t−1. We define the
set of codewords C as

C =
{

(cn−1, ..., c0) ∈ Fn
2 | g divides cn−1x

n−1 + ...+ c1x+ c0
}
.

Lemma 3.1. Let

H =


αn−1 αn−2 . . . α 1
α2(n−1) α2(n−2) . . . α2 1
α3(n−1) α3(n−2) . . . α3 1

...
...

. . .
...

...
α2t(n−1) α2t(n−2) . . . α2t 1

 .
Then kerH = C.
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Proof. Let v ∈ Fn
2 . Note that Hv = 0 if and only if

(α(n−1)i, α(n−2)i, ..., αi, 1) · (vn−1, vn−2, ..., v1, v0) = 0.

for each 1 ≤ i ≤ 2t. This occurs if and only if αi is a root of vn−1x
n−1 + ... + v1x + v0

for each 1 ≤ i ≤ 2t, thus v ∈ C.

Remark 3.2. Note that H is not strictly speaking a parity-check matrix as defined
previously, since its entries are elements of F, not F2. However, if each entry of H
is replaced by its corresponding binary m-tuple over F2, written in column form, we
obtain a binary parity-check matrix for C.

Lemma 3.3. The code C has minimum distance at least 2t+ 1, and hence can correct
t errors.

Proof. Suppose for a contradiction that there exists a non-zero c ∈ C such that ‖c‖ ≤ 2t.
Let ce1 , ce2 , ..., ceq be the non-zero components of c. Then

0 = Hc =


αe1 αe2 . . . αeq

α2e1 α2e2 . . . α2eq

...
...

. . .
...

α2te1 α2te2 . . . α2teq



ce1
ce2
...
ceq

 =


αe1 αe2 . . . αeq

α2e1 α2e2 . . . α2eq

...
...

. . .
...

α2te1 α2te2 . . . α2teq




1
1
...
1


Since q = ‖c‖ ≤ 2t, we can remove the bottom 2t − q rows from the matrix to obtain
the equation

0 =


αe1 αe2 . . . αeq

α2e1 α2e2 . . . α2eq

...
...

. . .
...

αqe1 αqe2 . . . αqeq




1
1
...
1


This is only possible if

0 = det


αe1 αe2 . . . αeq

α2e1 α2e2 . . . α2eq

...
...

. . .
...

αqe1 αqe2 . . . αqeq

 = αe1+...+eq det


1 1 . . . 1
αe1 αe2 . . . αeq

...
...

. . .
...

α(q−1)e1 α(q−1)e2 . . . α(q−1)eq


But this is impossible, as it is a Vandermonde determinant which is non-zero since each
αei is distinct.

Encoding. Suppose we wish to send the message

v = (vn−1, vn−2, ..., vn−k).
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To do this, form the polynomial

v(x) = vn−1x
n−1 + vn−2x

n−2 + ...+ vn−kx
n−k

and perform Euclidean division by g(x)

v(x) = q(x)g(x) + r(x)

where
r(x) = rn−k−1x

n−k−1 + ...+ r1x+ r0

is a polynomial of degree at most n− k − 1. By construction g(x) divides v(x) + r(x),
and hence

c = (vn−1, ..., vn−k, rn−k−1, ..., r0) ∈ C.

We transmit c.

Decoding. Suppose we receive the word w. Let w(x) be the associated polynomial,
and write w(x) = c(x) + e(x), where e(x) is the error. If the errors occur at positions
e1, ..., eq (where q ≤ t) then we have

e(x) = xe1 + ...+ xeq .

To decode, we begin by calculating si = w(αi) for 1 ≤ i ≤ 2t. Note that

si = c(αi) + e(αi)

= e(αi) since c ∈ C
= αie1 + ...+ αieq .

In order to find the error locations, we need to solve these equations for e1, ..., eq.

Proposition 3.4. Let

S =


s1 s2 . . . st
s2 s3 . . . st+1
...

...
. . .

...
st st+1 . . . s2t−1

 .
Then the number of errors q is equal to the rank of S, and moreover, the q×q principal
minor of S is invertible.

Proof. For 1 ≤ i ≤ q, let
ui = (αei , α2ei , ..., αtei).
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We claim that u1, ..., uq span the row space of S. To see this, note that for any 1 ≤ i ≤ q,
we have

n∑
j=1

α(i−1)ejuj =
n∑

j=1

α(i−1)ej(αej , α2ej , ..., αtej)

=

(
n∑

j=1

αiej ,
n∑

j=1

α(i+1)ej , ...,
n∑

j=1

α(i+t−1)ej

)
= (si, si+1, ..., si+t−1).

This is precisely the ith row of S. So each row of S can be written as a linear combination
of the ui and thus rankS ≤ q.

To show that rankS = q, it now suffices to prove the second part of the claim. Let
Uq be the q × q principal minor of S:

Uq =

s1 . . . sq
...

. . .
...

sq . . . s2q−1

 .
We claim that Uq = ADAT , where

D =

α
e1 . . . 0
...

. . .
...

0 . . . αeq

 , A =


1 1 . . . 1
αe1 αe2 . . . αeq

...
...

. . .
...

α(q−1)e1 α(q−1)e2 . . . α(q−1)eq

 .
For a matrix B, let Bi,j denote the entry in row i and column j. We compute:

(ADAT )i,j =

q∑
k=1

q∑
l=1

AikDklA
T
lj

=

q∑
k=1

AikDkkAjk

=

q∑
k=1

α(i−1)ekαekα(j−1)ek

=

q∑
k=1

α(i+j−1)ek

= si+j−1

= (Uq)i,j.

So Uq = ADAT . Since A is a Vandermonde matrix, it is invertible, and hence so is
Uq.
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The above proposition allows us to determine the number of errors. In fact, with a
little more work we can also use it to determine the locations of the errors as well.

Proposition 3.5. Consider the unique solution (σ0, ..., σq−1) to the matrix equation

Uq

 σ0
...

σq−1

 =

sq+1
...
s2q


Then the roots of xq + σq−1x

q−1 + ...+ σ1x+ σ0 in F are αe1 , ..., αeq .

Proof. Let

σ(x) = (x− αe1) . . . (x− αeq) = xq + σq−1x
q−1 + ...+ σ1x+ σ0.

We need to show that the coefficients σi satisfy the given matrix equation. Note that
for 1 ≤ i ≤ q we have

0 = σ(αei) = αqei + σq−1α
(q−1)ei + ...+ σ1α

ei + σ0.

and hence
αqei = σq−1α

(q−1)ei + ...+ σ1α
ei + σ0. (∗)

We compute:

q−1∑
j=0

si+jσj =

q−1∑
j=0

q∑
k=0

α(i+j)ekσj

=

q∑
k=0

αiek

q−1∑
j=0

αjekσj

=

q∑
k=0

αiekαqek by (∗)

=

q∑
k=0

α(i+q)ek

= si+q.

Hence s1 . . . sq
...

. . .
...

sq . . . s2q−1


 σ0

...
σq−1

 =

sq+1
...
s2q


as claimed.
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