1. Definitions

First, we give a brief overview of second order propositional logic. This extends the usual language
of propositional logic to also include quantifiers over propositions. Under the BHK interpretation, a
construction of Vpp(p) is a function which, given a proposition p, returns a proof of ¢(p).

In System F, we expand our set of types to include all second order propositional logic formulas
which can be built from the connectives — and V.

Definition: We say M is a term of type 7 in I', when M can be derived using the following
rules.

(Var) Le:Tthao:T
e:oFM:7

Ab
(Abs) 'FMz:oM):0—r7
(App) '-rM:o—r I'EN:o
PP T (MN):r
T-M:o .
(U. Abs) I Aall Voo (o ¢ FV(7) for each 27 € FV(M))
I'-M:Vao
(U. App) (o any type)

'k Mr:ola:=7]

The first three rules are the same as for simply typed A-calculus; the last two (universal abstraction
and application) deal with quantification over types. Here, « is any atomic type, called a type variable.

The purpose of the restriction in universal abstraction is to ensure that types of terms remain well
defined. For instance, consider the term Aa.z®. Recall that the environment I' must assign types to
all free variables in expressions on the right of the F; but in the above expression the free variable z
does not have a well defined type, as « is a type variable which ranges over all types! Note that it is
acceptable to form terms such as Aadz®.x®, as z is not free in this expression.

We should define precisely what we mean by a free variable:

Definition: The set of free variables FV(M) of a term M is the set of all object and type
variables free in M.

Substitution into object variables is exactly the same as in the simply typed A-calculus, with the
additional rules

(MT1)[x:= P] = M|z := P]r

(Aa.M)[z := P] = Aa.M [z := P] (a ¢ FV(P))
We now also have substitution of type variables, which use the following rules:
2P[a = o] = arle=0l
(MN)[a:= 0] = M[o := 0] N|a := 0]
(Az? M) o := o] = APl = Mo := 0]
(M7)|a := 0] = M[a := o]7]a := 0]
(AB.M)[a:=0] = AB.M[a:=0] (B¢ FV(o)U{p})

Likewise, we have two notions of S-reduction:
(A" .M)N —3 M|z := N] (Aa.M)T =5 Mo := 7]

As before, the subject reduction theorem holds, and hence well-typed expressions remain well-typed
after S-reduction:

Theorem: If I' - M™ and M —3 N then I' - N7.

The proof is essentially the same as the simply typed case, just with more possibilities to check in
the induction.



2. Basic Theorems

As in simply typed A-calculus, we have the strong normalisation and Church-Rosser properties:

Theorem: If M; € Ay then there exists My € NF with My —3 Ma.

Theorem: If M; —g My and M; —»g Mj then there exists My € Ay with My —g My and
M3 B M4.

This tells us that normal forms uniquely exist, and hence the equivalence of any two terms in
System F is a decidable problem. However, the obvious decision procedure (reduce both terms to their
normal forms and compare) has non-elementary time complexity; it is not bounded by any tower of
exponentials.

The proof for the strong normalisation theorem is based on the corresponding proof for simply
typed A-calculus, but the naive translation is problematic. Given a term M"*®, we would like to
define M to be reducible if and only if M7 is reducible for all 7. But this definition is circular, as one
possible 7 is indeed Vaa! The idea is instead to use a method known as reducibility candidates, but
this is beyond the scope of this talk.

Since System F is strongly normalising, it cannot be Turing complete; indeed it can only express
programs which halt. Luckily, this turns out to not be such a problem, as:

Theorem: The class of integer functions expressible in System F are exactly the functions provably
total in second-order arithmetic.

Here, by provably total we mean that second order arithmetic proves the formula which expresses
“for all n, the program e with input n terminates and returns an integer”, where e is an algorithm
that represents the function f.

The remainder of the talk will be devoted to showing exactly how System F can express functions,
integers and other data types.

3. Expressibility of System F

Part of the power of System F comes from the fact that we can represent inductive data types
in the language. Suppose we wish to model some data type p with constructors fi, ..., f; that is; n
functions which take in some number of inputs, and return an element of the data type. In other
words, each f; is a function of type o; = 7} — ... — Tiki — p. Define p to be the data type:

p=Va.oip=a] = .. op:=0] >«

We now give some examples:

Example 1: (Church numerals)
The two basic constructors for natural numbers are a constant Z (zero), and a function S from
w — w (successor). Natural numbers therefore correspond to the type

w=VYa.a— (a—=a)—a
The two constructors may be represented by the A-terms:
Z = Aoz \y“ 7z S = MY Aadz* Ay 7 y(tazy)

This is entirely analogous to Church numerals for simply typed or untyped A-calculus. The integer
n is represented by m = AaAz*Ay*~*.y(y(...(yx)...)). Additionally, we have the following:

Proposition: The only closed normal terms of type w are the Church numerals.

Recall a term is closed if it contains no free variables.

Proof: Any closed normal term of type w must be in head normal form; that is, of the form
X = Aadx® \y*7* M, where M is normal and of type «. Since « is a type variable, M cannot be an
abstraction. We will prove by induction that M = y(...(yx)...) for some number of y.



Suppose for a contradiction that M = RS or M = Rr where R # y. Then since M is normal, R
cannot be an abstraction; nor can it be a variable since M is well typed. Hence R must be of the form
R'S" or R'a’. Since X was closed, and the type of R’ is more complex than both that of z and y, it
follows that X must be an abstraction. But this is a contradiction, as then R would be a redex.

We conclude that either M is x, or M = yM’ for some M’; the result now follows by induction
(applying the same argument to M’ of type «).

Example 2: (Lists)

Given a type 7, we wish to form the type L., whose objects are finite lists of elements from 7. The
two constructors are N of type L, (the constant list) and C of type 7 — L, — L. (the function which
appends a single element to a given list).

Analogously to the above, we have:

L, =Vaa— (Toa—a)—a
N = Aoz \y" 747 % x

C = Xs" XL Aadz®\y™ 77 ys(taxy)
The list (s1, ..., Spn) is represented by

Cs1(Csa(...(CspN)...)) = Aadz® Ny 77 ysy1 (ysa(...(ysnx)...))

It is possible to encode various familiar functions for lists using this definition. For instance, the
length function is given by:
len = L7 Aadz® Ay~ lax (M7 .y)

We can concatenate two lists by just composing the corresponding A-terms in the usual way:
concat = ML AmI™ Aadz®\y™ 77 (la(mazxy)y)

It is also possible to define functions such as deletion of the first element, or reversal of a list. Such
constructions are not simple; this is not a shortcoming of System F so much as it is a shortcoming
of A-calculus in general. The difficulties are not unlike those seen when constructing a predecessor
function for Church numerals in the untyped A-calculus.

Example 3: (Binary trees)
Trees can be built inductively from two smaller trees. The constructors are therefore N : T and
C:T—T—T,given by:

T =Vaa— (a—a—a) =
N = Az \y* 7" 7%z

C = XsT AT Aaz® Ay~ 272 y(saxy)(tazy)

These trees do not actually store any data; the only real information content is just the shape of
the tree. However it is fairly straightforward to modify this definition to be able to store data of type
7 at each node however; simply change the constructor C': T =T —-T tobeC:7—T —>T —=T.

4. References

1. Sgrensen, Urzycz; Lectures on the Curry-Howard Isomorphism, Ch.11
2. Girard; Proofs and Types, Ch.11, 15



