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Move 37, Game 2, Sedol-AlphaGo 

“It’s not a human move. I’ve never seen a human play this move… So beautiful.”  
- Fan Hui, three-time European Go champion.
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A deep neural network (DNN) is a particular kind of function

Intro to deep learning

which depends in a “differentiable” way on a vector of weights.

Fw : Rm �! Rn

Example: Image classification, as in: cat or dog?
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which depends in a “differentiable” way on a vector of weights.

Fw : Rm �! Rn

Example: Playing the game of Go
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.

3,500

3,000

2,500

2,000

1,500

1,000

500

0

c

1 2 4 8 16 32

1 2 4 8

12

64

24

112

40

176

64

280

40

Single machine Distributed

a

Rollouts

Value network

Policy network

3,500

3,000

2,500

2,000

1,500

1,000

500

0

b

40

8

Threads

GPUs

3,500

3,000

2,500

2,000

1,500

1,000

500

0

El
o 

R
at

in
g

G
nuG

o

Fuego

P
achi

=HQ

C
razy S

tone

Fan H
ui

A
lphaG

o

A
lphaG

o
distributed

P
rofessional
 dan (p)

A
m

ateur
dan (d)

B
eginner
kyu (k)

9p
7p
5p
3p
1p

9d

7d

5d

3d

1d
1k

3k

5k

7k

Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ = 0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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Fw(current board) = 2 R19·19

2
R19⇥19

A deep neural network (DNN) is a particular kind of function

Intro to deep learning



Ew =
X

i

(Fw(xi)� yi)
2

A randomly initialised neural network is trained on sample data 

{(xi, yi)}i2I , xi 2 Rm
, yi 2 Rn

by varying the weight vector in order to minimise the error

which depends in a “differentiable” way on a vector of weights.

Fw : Rm �! Rn

A deep neural network (DNN) is a particular kind of function

Intro to deep learning



w1
w2

optimal network

initial network

training process (gradient descent)

Ew



A DNN is made up of many layers of “neurons” connecting the 
input (on the left) to the output (on the right) as in the following diagram:

�(x) = 1
2 (x+ |x|)

x1 y1

wij

yixj

yi = �

⇣X

j

wijxj

⌘

w1j

w11
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A DNN is made up of many layers of “neurons” connecting the 
input (on the left) to the output (on the right) as in the following diagram:

�(x) = 1
2 (x+ |x|)
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yixj

w(k)
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~x = (x1, x2, . . . , xj , . . .)
T W (k) = (w(k)

ij )i,j

yi = �

⇣X

j

w

(k)
ij xj

⌘



A DNN is made up of many layers of “neurons” connecting the 
input (on the left) to the output (on the right) as in the following diagram:

(0) (L+ 1)
x1

xj

Fw : Rm �! Rn

Intro to deep learning

Fw(~x) = �
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• Natural Language Processing (NLP) includes machine translation, 
processing of natural language queries (e.g. Siri) and question answering 
wrt. unstructured text (e.g. “where is the ring at the end of LoTR?”). 

• Two common neural network architectures for NLP are Recurrent Neural 
Networks (RNN) and Long-Short Term Memory (LSTM). Both are variations 
on the DNN architecture. 

• Many hard unsolved NLP problems require sophisticated reasoning about 
context and an understanding of algorithms. To solve these problems, recent 
work equips RNNs/LSTMs with “Von Neumann elements” e.g. stack memory. 

• RNN/LSTM controllers + differentiable memory is one model of differentiable 
programming, currently being explored at e.g. Google, Facebook, …

Applied deep learning



• These “memory enhanced” neural networks are already being used in 
production, e.g. Facebook messenger (~900m users). 

Salon, “Facebook Thinks It Has Found the Secret to Making Bots Less Dumb”, June 28 2016.



What is differentiable programming?

• Question: what if instead of coupling neural net controllers to 
imperative algorithmic elements (e.g. memory) we couple a neural net 
to functional algorithmic elements? 

• Problem: how to make an abstract functional language like Lambda 
calculus, System F, etc. differentiable? 

• Our idea: use categorical semantics in a category of “differentiable” 
mathematical objects compatible with neural networks (e.g. matrices of 
polynomials).

The idea is that a “differentiable” program

Pw : I �! O

should depend smoothly on weights, and, by varying the 
weights, one would learn a program with desired properties.



• Discovered by Girard in the 1980s, linear logic is a substructural 
logic with contraction and weakening available only for formulas 
marked with a new connective “!” (called the exponential). 

• The usual connectives of logic (e.g. conjunction, implication) are 
decomposed into ! together with a linearised version of that 
connective (called resp. tensor      , linear implication        ). 

• Under the Curry-Howard correspondence, linear logic 
corresponds to a programming language with “resource 
management” and symmetric monoidal categories equipped with 
a special kind of comonad.

Linear logic and semantics

⌦ (



variables: ↵,�, �, . . .

bint = 8↵ !(↵ ( ↵) (
�
!(↵ ( ↵) ( (↵ ( ↵)

�

int = 8↵ !(↵ ( ↵) ( (↵ ( ↵)

formulas: !F, F ⌦ F 0, F ( F 0, F&F 0, 8↵F , constants

Linear logic and semantics



More precisely, let us define a pre-proof to be a rooted tree whose edges are labelled
with sequents. In order to follow the logical ordering, the tree is presented with its root
vertex (the sequent to be proven) at the bottom of the page, and we orient edges towards
the root (so downwards). The labels on incoming edges at a vertex are called hypotheses
and on the outgoing edge the conclusion. For example consider the following tree, and its
equivalent presentation in sequent calculus notation:

� ` A � ` B

�,� ` A⌦ B

� ` A � ` B

�,� ` A⌦ B

Leaves are presented in the sequent calculus notation with an empty numerator.

Definition 4.1.A proof is a pre-proof together with a compatible labelling of vertices by
deduction rules. The list of deduction rules is given in the first column of (4.2) – (4.14).
A labelling is compatible if at each vertex, the sequents labelling the incident edges match
the format displayed in the deduction rule.

In all deduction rules, the sets � and�may be empty and, in particular, the promotion
rule may be used with an empty premise. In the promotion rule, !� stands for a list of
formulas each of which is preceeded by an exponential modality, for example !A1, . . . , !An

.
The diagrams on the right are string diagrams and should be ignored until Section 5. In
particular they are not the trees associated to proofs.

(Axiom):
A ` A

A

A

(4.2)

�, A,B,� ` C

(Exchange):
�, B,A,� ` C

� AB �

C

(4.3)
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�,� ` B

(Weakening): weak
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B
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(Right 1): 1-R
` 1

1

1
(4.14)

Example 4.2.For any formula A let 2
A

denote the proof (2.4) from Section 2, which we
repeat here for the reader’s convenience:

A ` A

A ` A A ` A ( L

A,A ( A ` A

( L

A,A ( A,A ( A ` A

( R

A ( A,A ( A ` A ( A

der
!(A ( A), A ( A ` A ( A

der
!(A ( A), !(A ( A) ` A (

ctr
!(A ( A) ` A ( A

( R

` int
A

(4.15)

We also write 2
A

for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof n

A

of int
A

constructed
along similar lines, see [22, §5.3.2] and [15, §3.1].

In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write

11

Definition 7.5 (Second-order linear logic).The formulas of second-order linear logic
are defined recursively as follows: any formula of propositional linear logic is a formula,
and if A is a formula then so is 8x .A for any propositional variable x. There are two new
deduction rules:

� ` A 8R
� ` 8x .A

�, A[B/x] ` C

8L
�, 8x .A ` C

where � is a sequence of formulas, possibly empty, and in the right introduction rule we
require that x is not free in any formula of �. Here A[B/x] means a formula A with all
free occurrences of x replaced by a formula B (as usual, there is some chicanery necessary
to avoid free variables in B being captured, but we ignore this).

Intuitively, the right introduction rule takes a proof ⇡ and “exposes” the variable x,
for which any type may be substituted. The left introduction rule, dually, takes a formula
B in some proof and binds it to a variable x. The result of cutting a right introduction
rule against a left introduction rule is that the formula B will be bound to x throughout
the proof ⇡. That is, cut-elimination transforms

⇡

.

.

.

� ` A

8R
� ` 8x .A

⇢

.

.

.

�, A[B/x] ` C

8L
�, 8x .A ` C

cut

�,� ` C

(7.8)

to the proof

⇡[B/x]

.

.

.

� ` A[B/x]

⇢

.

.

.

�, A[B/x] ` C

cut

�,� ` C

(7.9)

where ⇡[B/x] denotes the result of replacing all occurrences of x in the proof ⇡ with B. In
the remainder of this section we provide a taste of just what an explosion of possibilities
the addition of quantifiers to the language represents.

Example 7.6 (Integers).The type of integers is

int = 8x . !(x ( x) ( (x ( x) .

For each integer n � 0 we define n to be the proof
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Deduction rules for linear logic



Binary integers

S 2 {0, 1}⇤ 7�! proof tS of ` bint

bint = 8↵ !(↵ ( ↵) (
�
!(↵ ( ↵) ( (↵ ( ↵)

�

t001

↵ ` ↵

↵ ` ↵
↵ ` ↵ ↵ ` ↵ ( L
↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵

( R
↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵ ( ↵

der
!(↵ ( ↵), !(↵ ( ↵), !(↵ ( ↵) ` ↵ ( ↵

ctr
!(↵ ( ↵), !(↵ ( ↵) ` ↵ ( ↵

( R
!(↵ ( ↵) ` !(↵ ( ↵) ( (↵ ( ↵)

( R
` !(↵ ( ↵) (

�
!(↵ ( ↵) ( (↵ ( ↵)

�



(one variable per entry in a d x d matrix)

Polynomial semantics (sketch)

J↵K = Rd

J↵ ( ↵K = L(Rd,Rd) = Md(R)

J!(↵ ( ↵)K = R[{aij}1i,jd] = R[a11, . . . , aij , . . . , add]

JbintK = J!(↵ ( ↵) (
�
!(↵ ( ↵) ( (↵ ( ↵)

�
K

= Md

�
R[{aij , a0ij}1i,jd]

�

(matrices of polynomials in the variables a, a’)



(matrices of polynomials in the variables a, a’)

JbintK = Md

�
R[{aij , a0ij}1i,jd]

�

tS : bint, JtSK 2 JbintK

Jt0K =

0

BBB@

a11 · · · a1d
a21 · · · a2d
...

...
ad1 · · · add

1

CCCA
Jt1K =

0

BBB@

a011 · · · a01d
a021 · · · a02d
...

...
a0d1 · · · a0dd

1

CCCA

Jt001K = Jt0K · Jt0K · Jt1K

Polynomial semantics (sketch)

S 2 {0, 1}⇤



(matrices of polynomials in the variables a, a’)

JbintK = Md

�
R[{aij , a0ij}1i,jd]

�

tS : bint, JtSK 2 JbintK

Polynomial semantics (sketch)

vector space

Jt0K
Jt1K

Jt001K

JbintK

Upshot: proofs/programs to vectors



(matrices of polynomials in the variables a, a’)
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�

Polynomial semantics (sketch)

Jt0K
Jt1K

Jt001K

JbintK

Upshot: proofs/programs to vectors

T

T 2

evalT (A,B) = T |aij=Aij ,a0
ij=Bij A,B 2 Md(R)



(matrices of polynomials in the variables a, a’)

JbintK = Md

�
R[{aij , a0ij}1i,jd]

�

Polynomial semantics (sketch)

Jt0K
Jt1K

Jt001K

JbintK

Upshot: proofs/programs to vectors

T

T 2

evalJt0K(A,B) = A evalJt001K(A,B) = AAB



Our model: RNN controller + differentiable “linear logic” module
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H,S, U,QA, QB , QT are matrices of weights

h(t) = �
⇣
S evalT (t)(A(t), B(t)) +Hh(t�1) + Ux(t)

⌘
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T (t) 2 JbintK


