Linear logic anad
deep learning

Huiyi Hu, Daniel Murfet

N-¥.
-3‘.’%"‘

’

SR

Move 37, Game 2, Sedol-AlphaGo

“It's not a human move. I've never seen a human play this move... So beautitul.”
- Fan Hui, three-time European Go champion.

Outline

Introduction to deep learning
What is differentiable programming?
Linear logic and the polynomial semantics

Our model

INntro to deep learning

A deep neural network (DNN) is a particular kind of function
F,:R"™ — R"

which depends in a “differentiable” way on a vector of weights.

Example: Image classification, as in: cat or dog”?

' (W, 3 ¥
- - -
W
>
__ - .\,‘
e k .
~ P e
- L}
. -
- -« Y . ‘\
by g ST Sy 28 TN
- - » p- L 2 - —
. ™ e ~ —_—
e . ca .

INntro to deep learning

A deep neural network (DNN) is a particular kind of function
F,:R"™ — R"

which depends in a “differentiable” way on a vector of weights.

Example: Playing the game of Go

F,(current board) =
M

R19X19

INntro to deep learning

A deep neural network (DNN) is a particular kind of function
F,:R"™ — R"

which depends in a “differentiable” way on a vector of weights.

A randomly initialised neural network is trained on sample data
(i, i) bier sz € R y; € R

by varying the weight vector in order to minimise the error

IS Z(Fw(%) — yi)2

1

training process (gradient descent)

INnitial network

- optimal network

INntro to deep learning

A DNN is made up of many layers of “neurons” connecting the
input (on the left) to the output (on the right) as in the following diagram:

w11
ceh ———p a;'l o > @ yl —_—e e
U}lj
cek ———— ,CL)J o > @ y,L e
wij

INntro to deep learning

A DNN is made up of many layers of “neurons” connecting the
input (on the left) to the output (on the right) as in the following diagram:

®) W k4D
o' F)
1y
"o

INntro to deep learning

A DNN is made up of many layers of “neurons” connecting the
input (on the left) to the output (on the right) as in the following diagram:

®w® kD
(B)
1y
wF)

¥

INntro to deep learning

A DNN is made up of many layers of “neurons” connecting the
input (on the left) to the output (on the right) as in the following diagram:

(0) (L +1)
:L']_ . P cecesecccsesccsesccns > .
QZ'J . e . _ ‘
Zlfm. P cecccsssssscccccssans > .

F,: R™ — R" F(7) :O(W(L)---U(W(l)g(w(o)f))

Applied deep learning

Natural Language Processing (NLP) includes machine translation,
processing of natural language queries (e.qg. Siri) and guestion answering
wrt. unstructured text (e.g. “where is the ring at the end of LoTR?").

Two common neural network architectures for NLP are Recurrent Neural
Networks (RNN) and Long-Short Term Memory (LSTM). Both are variations
on the DNN architecture.

Many hard unsolved NLP problems require sophisticated reasoning about
context and an understanding of algorithms. To solve these problems, recent
work equips RNNs/LSTMs with “Von Neumann elements” e.g. stack memory.

RNN/LSTM controllers + differentiable memory is one model of differentiable
programming, currently being explored at e.g. Google, Facebook, ...

 These "memory enhanced” neural networks are already being used Iin
production, e.g. Facebook messenger (~900m users).

Facebook isn’t the only company that’s working to combine machine-learning
algorithms with contextual memory. Google’s artificial intelligence lab, DeepMind,
has developed a system that it calls the Neural Turing Machine. In an impressive
demonstration, Google’s Neural Turing Machine learned and taught itself to use a

copy-paste algorithm by observing a series of inputs and outputs.

Facebook Chief Technical Officer Mike Schroepfer has called memory “the missing
component of A.l.” And FAIR research scholar Antoine Bordes, who co-authored the
papers on memory networks, told me he believes it could hold the key to finally
building bots that interact naturally, in human language. “The way people use
language is very difficult for machines, because the machine lacks a lot of the
context,” Bordes said. “They don’t know that much about the world, and they don’t

know that much about you.” But—at last—they’re learning.

Salon, “Facebook Thinks It Has Found the Secret to Making Bots Less Dumb”, June 28 2016.

What is differentiable programming®

The idea is that a “differentiable” program
P,: I — O

should depend smoothly on weights, and, by varying the
weights, one would learn a program with desired properties.

Question: what if instead of coupling neural net controllers to
imperative algorithmic elements (e.g. memory) we couple a neural net
to functional algorithmic elements?

Problem: how to make an abstract functional language like Lambda
calculus, System F, etc. differentiable?

Our idea: use categorical semantics in a category of “differentiable”
mathematical objects compatible with neural networks (e.g. matrices of
polynomials).

Linear logic and semantics

* Discovered by Girard in the 1980s, linear logic is a substructural
logic with contraction and weakening available only for formulas
marked with a new connective “!” (called the exponential).

* The usual connectives of logic (e.g. conjunction, implication) are
decomposed into ! together with a linearised version of that
connective (called resp. tensor &, linear implication —o).

* Under the Curry-Howard correspondence, linear logic
corresponds to a programming language with “resource
management” and symmetric monoidal categories equipped with
a special kind of comonad.

Linear logic and semantics

variables: «, 3,7, ...

formulas: |F,F Q F',F — F', F&F' VaF', constants

int =Va l(a — a) — (a — «a)

bint = Va (o — a) —o (I(a — a) —o (a — a))

Deduction rules for linear logic

SRS r-A A"AAFB I'A,B,AFC
(Axiom): A=A (Cut): NT AR B cut (Exchange): T BAAFC
 [AB,AFC | TFA AFB
(Left ®): T AQB.AFC ®-L (Right ®): T AFAGB ®-R

ATFB A A.BAFC

(Right —): vy —p~r Gl Wi parc ™
: ' . I'NVAJAEB . I'UAEB
(Promotion): l; 'I:'j?l prom (Dereliction): TIAAFB der (Weakening): TIAAFD weak
: VATAJ AR B I'VAB/z| - C ' A
: — ctr VR
(Contraction): —p—7— o p—« T vz AFC THVr. A

Binary integers

bint = Va (o — a) —o (I(a — a) —o (a — a))

S €40,1}* — proof tg of + bint

o o ot o
o o a,00—o ol o

—o L,

—o L
o o o, —o , 0 —o o«

—o L
o, 00 —o Q,(x —° O, x —o O

— R

o0 —oQq,0—o00—oQFa—d "
der 001

(oo — a), (a0 — a),!(aa — a) F a — «a
— ¢ ctr
(o — a),(ad —o a) - a — «
¢

(o — a) F (a —) — (a0 —o) B

—0 R

(e — a) — ((a — a) —o (a — a))

Polynomial semantics (sketch)

la] = R4
[— a]] = L(R%, RY) = My(R)

|['(Oé —0 Oé)]] — R[{aﬂij}lgi,jgd] — R[all, N 7% R ,Cde]

(one variable per entry in a d x d matrix)

[bint] = [!I(a — @) — ((a —0 @) —o (@ —o «))]

= M, (R[{aij, a;;j }léi,jéd])

(matrices of polynomials in the variables a, a’)

Polynomial semantics (sketch)

|[bint]] = M, (R[{aijv a;j }lﬁi,jéd])

(matrices of polynomials in the variables a, a’)

S e {0,1}* tg : bint, ﬂtsﬂ c |[bint]]

/ /
a1 -+ Aaid o R O 2
/ /
a21 e o o a2d &21 e o o a’2d
[to] = : : It1] = :
/ /
a1 Add adl a’dd

[too1] = [to] - [to] - [£1]

Polynomial semantics (sketch)

|[bint]] = M, (R[{a’ijv a;j }1§i,j§d])

(matrices of polynomials in the variables a, a’)

ts : bint, [ts] € [bint] -

veclor space

RN /
[to] * [too1]

[bint]|

Upshot: proofs/programs to vectors

Polynomial semantics (sketch)

T ¢ [bint] = M4(R[{as;, aj; }1<i,j<al)

(matrices of polynomials in the variables a, a’)

evalT(A, B) — T‘a'j:Aij,a;j:Bij A) B E Md(R)
, T
ﬂtOH * HtOOlﬂ
[bint]

Upshot: proofs/programs to vectors

Polynomial semantics (sketch)

T ¢ [bint] = M4(R[{as;, aj; }1<i,j<al)

(matrices of polynomials in the variables a, a’)

evalﬂto]] (A, B) = A eval[[tom]] (A, B) — AAB

. o m o
[to] * [too1]]

[bint]

Upshot: proofs/programs to vectors

Our model: RNN controller + differentiable “linear logic” module

|_,\

-1 1
A \ i
® ® ({) ®

O - 1A
) . S)

- AN ® .
— 8, D e\/a|T(Jc)(Pr B) —
. : B“‘)/ -

Q1 U
D) ,
é :
1(”

T® e [bint] H,S,U Qa,Qp, QT are matrices of weights
() — g(s evalyo (A®, BOY £ gpt=1 4 U:z:(t))

A — J(Q 4 h(t—l)) Bt _ (,(QB h(t—l)) () (,(QT h(t—l))

