Introduction to Intuitionistic Logic

August 31, 2016

We deal exclusively with propositional intuitionistic logic. The language
is defined as follows.
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A judgment (also called a sequent) I' - ¢, where T is a finite set and ¢ is
a formula.! Tt is read “T" entails ¢” or “¢ follows from I".

Some notational conventions. {¢,¥} = 0 is written ¢,¢ - 6, ' U A is
written ', A, T'U {¢} is written ', ¢, and () F ¢ is written b ¢.

Derivations are trees whose leaves are all axioms,

Lot 9,
and which is built out of the following rules.
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T think that ‘judgment’ is more common in the literature oriented towards type theory
and computer science and ‘sequent’ in literature oriented towards proof theory.
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A judgment I'" = ¢ is derivable just in case there is a derivation whose
root is I' = ¢. A provable judgment is officially I' Fn ¢, but the subscript
will usually be omitted.

Why expect that the —-fragment will line up with lambda calculus? This
presentation of intuitionistic logic makes the correspondence relatively clear.
Consider the rules for constructing derivations in the simply typed lambda
calculus. They closely resemble the axiom and arrow rules for the logic. To
make the connection more precise, one can annotate the logical calculus with
terms that are then modified using the rules.

Natural deduction is also given in a form whose nodes are just formulas,
rather than judgments. This was Gentzen’s original presentation and has
been investigated by Prawitz, and others. The sequent form of natural de-
duction brings the open premises along for each step of a derivation, whereas
in Gentzen’s formulation one must look at the whole tree to determine the
open assumptions. The latter uses, in a sense, non-local information.

In classical logic, given {—, 1}, one can define the other connectives. This
is not the case in intuitionistic logic. One can define negation, but not con-
junction and disjunction, so we need to take the latter as primitive. The in-
tuitionistic connectives are not truth-functional. How should we understand
the connectives? A gloss known as the BHK (Brouwer-Heyting-Kolmogorov)
interpretation understands them in terms of constructions, which are left
imprecise.

e Atoms are primitive constructions.

e There is no construction of L.

A construction of pA1) consists of a construction of ¢ and a construction

of .

A construction of ¢1 V ¢ consists of an index i € {1,2} and a construc-
tion of ¢;.

A construction of ¢ — 1 consists of a function that transforms con-
structions of ¢ into constructions of .

This also gives a reason to suspect that intuitionistic logic will line up with
the simply typed lambda calculus. Conditionals map items of one sort, ¢
constructions, to another sort, v constructions.



Intuitionistic logic agrees with classical logic on a lot, although the dif-
ferences are important and give content to the claim that intuitionistic logic
is constructive. In intuitionistic logic, the following are invalid.
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(2 A ) = =dV
((p—=v)—=¢) = ¢

o (Y —==9) = (9 — 1)

It is instructive to see why double negation elimination should fail. We can’t
*show™ that it is invalid yet, but we can motivate it. Suppose that one shows
that —¢ leads to L, so one shows that =—¢. This is not a construction of ¢,
but rather a construction showing that the claim that —¢ leads to absurdity.
Note, however, that negations can sometimes disappear, if one is already
dealing with negated formulas, since =—=—¢ <> —¢ is derivable.

The book glosses over the distinction between derivable and admissible
rules. This is an important distinction in proof theory. It is not essential for
present purposes, so we won't dwell on it. A rule

Si...Sk
S

is admissible just in case if there are derivations of Sy,..., S then there is
a derivation of S. The height of a derivation is the number of nodes in the
longest path from the root to the leaves.? A rule

S
S
is height-preserving admaissible just in case if there is a derivation of S; with
height n, then there is a derivation of S with height at most n.

The proof system, as it stands, is not that user-friendly, so we will show
a few rules are admissible.

Lemma 1. The rule

2This definition needs some work, but it will get tedious to define ‘path’. The meaning
should be clear.
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1s height-preserving admissible.

Proof. The proof is by induction on the construction of the derivation. Sup-
pose that the only step is an axiom. Then I';A F ¢ is an axiom too, as
pel.

The inductive steps are largely similar, so we will do one. Suppose that
¢ is ¢ V 0 and comes by VI in n + 1 steps. There are two cases, which are
similar, depending on whether ¢ or # is the conclusion. By the induction
hypothesis, I';) A F 1 is derivable in at most n steps, so ' A F ¢ V @ is
derivable in at most n + 1 steps. O

Lemma 2. The rule
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15 admissible, and similarly for the other multipremiss rules.

Proof. Suppose I' - ¢ and A F ¢ are derivable. By the previous lemma,
A F ¢ and ')A + 9 are derivable, so one can apply the conjunction
introduction rule to obtain the desired conclusion. O]

Lemma 3. The rule

I'F¢9 Aok
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18 admaissible.

Proof. Suppose I' = ¢ and A, ¢ + 1 are derivable. Then A F ¢ — 1 is
derivable. From the previous lemma, I') A v O]

Lemma 4. The rule
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1s admuissible.

Proof. Suppose I' = ¢ is derivable. By lemma 1, I';¢) - ¢ is derivable, so
' -9 — ¢ is derivable by —1. ]



Define ¢[p := 1] as the formula obtained by simultaneously substituting
1 for all occurrences of p in ¢. Define I'[p := 4] as {y[p :==¢] : v € I'}. We
further require that p not be L.3

Lemma 5. The rule

TFo
Llp =] F ¢[p =]

18 admuissible.

Proof. The proof is by induction on the construction of the derivation. Sup-
pose that I' = ¢ comes by an axiom. Then ¢ € I', so ¢[p := ¢] € I'[p := ¢].
Therefore I'[p := ¢ b ¢[p := 1] is an axiom.

The inductive steps are all similar. We will do one, the step for disjunction
introduction, so the derivation ends with the following step.

o
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By the induction hypothesis, I'[p := ¢| F ¢[p := 9] is derivable. By VI,
Clp =] F ¢[p := ] VO[p := 1] is derivable, which is the desired conclusion
judgment, since substitution commutes with the logical connectives. O]

These lemmas make the system a bit easier to use. Right now we are
interested in what judgments are derivable, so we will treat all the admissible
rules above as though they were rules of the system. We could, if pressed,
unpack all the derivations that use them into derivations in the system using
only the basic rules. We will also follow the convention of omitting proofs of
derived judgments, treating them like axioms.

Let’s do some formal derivations!
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3What would go wrong without this condition?
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Intuitionistic natural deduction proofs have the feature that they can be
put into a normal form. We won’t get into the details here, but a normal
proof is a proof that doesn’t have detours consisting of the introduction of a
connective followed immediately by its elimination. An example is given by
the following fragment.

LoEd
Tk ¢ TFo¢—
T

The conditional ¢ — v is introduced then eliminated immediately. One can
show that a proof with detours like that can be systematically transformed
into a proof with no detours. This is the Normalizaiton Theorem, the first
published proof of which is due to Prawitz. The Normalization Theorem
has lots of important consequences. One consequence is that a normal proof
breaks into two parts: one part whose only rules are elimination rules followed
by a part whose only rules are introduction rules. Using this, one can show

6



that formulas are not derivable. One can also show that intuitionistic logic
has the Disjunction Property: if = ¢ \V 1, then either ¢ or F 1 .Note that
classical logic does not have this property.

The relations between intuitionistic logic and classical logic are interest-
ing. Here’s one.

Glivenko’s Theorem: ¢ is a classical tautology iff - ¢ in intuitionistic logic.

One can get a natural deduction system for classical logic by adding to the
intuitionistic system either - ¢ V =¢ as an axiom or the following rule.

Ik ==
TFé

If one is working with just the arrow fragment, one can add Peirce’s rule.

L' (p—=v)—¢
TF ¢




