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Turing machines
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Turing machines

A Turing machine T is a function

�T : {0, 1}⇥ {1, . . . , q} �! {0, 1}⇥ {1, . . . , q}⇥ {L,R}

read symbol writecurrent state new state move to

{0, 1}⇤ ⇥ {0, 1}⇤ ⇥ {1, . . . , q} �! {0, 1}⇤ ⇥ {0, 1}⇤ ⇥ {1, . . . , q}



Linear logic
• Discovered by Girard in the 1980s, linear logic is a substructural 

logic with contraction and weakening available only for formulas 
marked with an “exponential” connective, written “!”. 

• The usual connectives of logic (e.g. conjunction, implication) are 
decomposed into ! together with a linearised version of that 
connective (called resp. tensor, linear implication). 

• Under Curry-Howard, linear logic corresponds to a programming 
language with “resource management” and symmetric monoidal 
categories equipped with a special kind of comonad. 

• We will use second-order intuitionistic linear logic with additives 
(as expressive as polymorphic lambda calculus).



Linear logic
variables: ↵,�, �, . . .

bint = 8↵ !(↵ ( ↵) (
�
!(↵ ( ↵) ( (↵ ( ↵)

�

int = 8↵ !(↵ ( ↵) ( (↵ ( ↵)

formulas: !F, F ⌦ F 0, F ( F 0, F&F 0, 8↵F , constants



More precisely, let us define a pre-proof to be a rooted tree whose edges are labelled
with sequents. In order to follow the logical ordering, the tree is presented with its root
vertex (the sequent to be proven) at the bottom of the page, and we orient edges towards
the root (so downwards). The labels on incoming edges at a vertex are called hypotheses
and on the outgoing edge the conclusion. For example consider the following tree, and its
equivalent presentation in sequent calculus notation:

� ` A � ` B

�,� ` A⌦ B

� ` A � ` B

�,� ` A⌦ B

Leaves are presented in the sequent calculus notation with an empty numerator.

Definition 4.1.A proof is a pre-proof together with a compatible labelling of vertices by
deduction rules. The list of deduction rules is given in the first column of (4.2) – (4.14).
A labelling is compatible if at each vertex, the sequents labelling the incident edges match
the format displayed in the deduction rule.

In all deduction rules, the sets � and�may be empty and, in particular, the promotion
rule may be used with an empty premise. In the promotion rule, !� stands for a list of
formulas each of which is preceeded by an exponential modality, for example !A1, . . . , !An

.
The diagrams on the right are string diagrams and should be ignored until Section 5. In
particular they are not the trees associated to proofs.

(Axiom):
A ` A

A

A

(4.2)

�, A,B,� ` C

(Exchange):
�, B,A,� ` C

� AB �

C

(4.3)
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� ` A �0
, A,� ` B

(Cut): cut
�0

,�,� ` B

B

� ��0

A (4.4)

� ` A � ` B(Right ⌦): ⌦-R
�,� ` A⌦ B

A B

� �

(4.5)

�, A,B,� ` C

(Left ⌦): ⌦-L
�, A⌦ B,� ` C

� A⌦ B �

C

(4.6)

A,� ` B

(Right (): ( R

� ` A ( B

A ( B

�

A

B

(4.7)
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�,� ` B

(Weakening): weak
�, !A,� ` B
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Example 4.2.For any formula A let 2
A

denote the proof (2.4) from Section 2, which we
repeat here for the reader’s convenience:

A ` A

A ` A A ` A ( L

A,A ( A ` A

( L

A,A ( A,A ( A ` A

( R

A ( A,A ( A ` A ( A

der
!(A ( A), A ( A ` A ( A

der
!(A ( A), !(A ( A) ` A (

ctr
!(A ( A) ` A ( A

( R

` int
A

(4.15)

We also write 2
A

for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof n

A

of int
A

constructed
along similar lines, see [22, §5.3.2] and [15, §3.1].

In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write
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Definition 7.5 (Second-order linear logic).The formulas of second-order linear logic
are defined recursively as follows: any formula of propositional linear logic is a formula,
and if A is a formula then so is 8x .A for any propositional variable x. There are two new
deduction rules:

� ` A 8R
� ` 8x .A

�, A[B/x] ` C

8L
�, 8x .A ` C

where � is a sequence of formulas, possibly empty, and in the right introduction rule we
require that x is not free in any formula of �. Here A[B/x] means a formula A with all
free occurrences of x replaced by a formula B (as usual, there is some chicanery necessary
to avoid free variables in B being captured, but we ignore this).

Intuitively, the right introduction rule takes a proof ⇡ and “exposes” the variable x,
for which any type may be substituted. The left introduction rule, dually, takes a formula
B in some proof and binds it to a variable x. The result of cutting a right introduction
rule against a left introduction rule is that the formula B will be bound to x throughout
the proof ⇡. That is, cut-elimination transforms

⇡

.

.

.

� ` A

8R
� ` 8x .A

⇢

.

.

.

�, A[B/x] ` C

8L
�, 8x .A ` C

cut

�,� ` C

(7.8)

to the proof

⇡[B/x]

.

.

.

� ` A[B/x]

⇢

.

.

.

�, A[B/x] ` C

cut

�,� ` C

(7.9)

where ⇡[B/x] denotes the result of replacing all occurrences of x in the proof ⇡ with B. In
the remainder of this section we provide a taste of just what an explosion of possibilities
the addition of quantifiers to the language represents.

Example 7.6 (Integers).The type of integers is

int = 8x . !(x ( x) ( (x ( x) .

For each integer n � 0 we define n to be the proof
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Deduction rules for linear logic

a sequent is � ` A for a sequence of formulae �, where ` is the “turnstile”



Binary integers

S 2 {0, 1}⇤ 7�! proof tS of ` bint

bint = 8↵ !(↵ ( ↵) (
�
!(↵ ( ↵) ( (↵ ( ↵)

�

t001

↵ ` ↵

↵ ` ↵
↵ ` ↵ ↵ ` ↵ ( L
↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵

( R
↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵ ( ↵

der
!(↵ ( ↵), !(↵ ( ↵), !(↵ ( ↵) ` ↵ ( ↵

ctr
!(↵ ( ↵), !(↵ ( ↵) ` ↵ ( ↵

( R
!(↵ ( ↵) ` !(↵ ( ↵) ( (↵ ( ↵)

( R
` !(↵ ( ↵) (

�
!(↵ ( ↵) ( (↵ ( ↵)

�



Aside on linear logic

⇡
...

!A,B ` C
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Binary integers

t001
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Binary integers
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�
!(↵ ( ↵) ( (↵ ( ↵)

�

output ffg
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101 7! {(f, g) 7! gfg}



Stratified Linear logic
variables: ↵,�, �, . . .

formulas: !F, §F, F ⌦ F, F ( F, F&F, 8↵F , constants

bint§ = 8↵ !(↵ ( ↵) (
�
!(↵ ( ↵) ( §(↵ ( ↵)

�

int§ = 8↵ !(↵ ( ↵) ( §(↵ ( ↵)
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rule may be used with an empty premise. In the promotion rule, !� stands for a list of
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We also write 2
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for the proof of !(A ( A) ` A ( A obtained by reading the above proof
up to the penultimate line. For each integer n � 0 there is a proof n
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constructed
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In what sense is this proof an avatar of the number 2? In the context of the �-calculus
we appreciated the relationship between the term T and the number 2 only after we saw
how T interacted with other terms M by forming the function application (T M) and
then finding a normal form with respect to �-equivalence.

The analogue of function application in linear logic is the cut rule. The analogue of
�-equivalence is an equivalence relation on the set of proofs of any sequent, which we write
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Deduction rules for stratified linear logic
same rules as before… e.g.

plus

A proof in the stratified sequent calculus is a proof in the usual sense,
together with a stratification, which is an assignment of integers to all

occurrences of formulas, such that conclusions are assigned 0 and the
assignment changes across deduction rules are as shown in blue.

|�| = 1

i i

i i

i

i i

i

i i

i

i+1

i

i+1

i

i

i i

i

i+1

i

i+1



Binary integers

S 2 {0, 1}⇤ 7�! proof tS of ` bint

bint = 8↵ !(↵ ( ↵) (
�
!(↵ ( ↵) ( (↵ ( ↵)

�

t001

↵ ` ↵

↵ ` ↵
↵ ` ↵ ↵ ` ↵ ( L
↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵

( R
↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵ ( ↵

der
!(↵ ( ↵), !(↵ ( ↵), !(↵ ( ↵) ` ↵ ( ↵

ctr
!(↵ ( ↵), !(↵ ( ↵) ` ↵ ( ↵

( R
!(↵ ( ↵) ` !(↵ ( ↵) ( (↵ ( ↵)

( R
` !(↵ ( ↵) (

�
!(↵ ( ↵) ( (↵ ( ↵)

�



Binary integers (stratified)

S 2 {0, 1}⇤ 7�! proof tS of ` bint

bint§ = 8↵ !(↵ ( ↵) (
�
!(↵ ( ↵) ( §(↵ ( ↵)

�

§

§

↵ ` ↵

↵ ` ↵
↵ ` ↵ ↵ ` ↵ ( L
↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵

( R
↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵ ( ↵

der, §
!(↵ ( ↵), !(↵ ( ↵), !(↵ ( ↵) ` §(↵ ( ↵)

ctr
!(↵ ( ↵), !(↵ ( ↵) ` §(↵ ( ↵)

( R
!(↵ ( ↵) ` !(↵ ( ↵) ( §(↵ ( ↵)

( R
` !(↵ ( ↵) (

�
!(↵ ( ↵) ( §(↵ ( ↵)

�

t001
§



↵ ` ↵

↵ ` ↵
↵ ` ↵ ↵ ` ↵ ( L
↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵ ` ↵

( L
↵,↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵

( R
↵ ( ↵,↵ ( ↵,↵ ( ↵ ` ↵ ( ↵

der, §
!(↵ ( ↵), !(↵ ( ↵), !(↵ ( ↵) ` §(↵ ( ↵)

ctr
!(↵ ( ↵), !(↵ ( ↵) ` §(↵ ( ↵)

( R
!(↵ ( ↵) ` !(↵ ( ↵) ( §(↵ ( ↵)

( R
` !(↵ ( ↵) (

�
!(↵ ( ↵) ( §(↵ ( ↵)

�

Binary integers (stratified)

S 2 {0, 1}⇤ 7�! proof tS of ` bint

bint§ = 8↵ !(↵ ( ↵) (
�
!(↵ ( ↵) ( §(↵ ( ↵)

�

§

t001

§

§

0
0 0
0 0 0

0 0 0 0
1 1 1 1

1 1 1 1 1
1 1 1 1 1 1

1 1 1 1
1 1 1 1 1



Integers

8n 2 N there is a proof n of ` int

Addition is a proof of int, int ` int

Multiplication is a proof of int, int ` int

A polynomial of degree k is a proof of int ` int

int = 8↵ !(↵ ( ↵) ( (↵ ( ↵)



Integers (stratified)

(note that !(↵ ( ↵) ( (↵ ( ↵) is not provable)

int§ = 8↵ !(↵ ( ↵) ( §(↵ ( ↵)

8n 2 N there is a proof n of ` int§
§

Multiplication is a proof of int§, int§ ` §int§

Addition is a proof of int§, int§ ` int§

A polynomial of degree k is a proof of int§ ` §

kint§



Turing machines as proofs

Tur = bint⌦ bint⌦ boolq

Configuration (wL, wR, q) of Turing machine 7�! proof of ` Tur

Turing machines

011 1 1 0 1

3

binary integer booleanbinary integer

A configuration is (wL, wR, q) 2 {0, 1}⇤ ⇥ {0, 1}⇤ ⇥ {1, . . . , q}

wRwop

L

Shown configuration: (1011 · · · , 101 · · · , 3)

Instructions for a Turing machine T 7�! proof of ` Tur ( Tur



Running a Turing machine
(Identify a Turing machine T with a proof of ` Tur ( Tur)

T
...

` Tur ( Tur
prom

` !(Tur ( Tur)

...

bint ` Tur Tur ` Tur
( L

bint,Tur ( Tur ` Tur
( L

bint, !(Tur ( Tur) ( (Tur ( Tur) ` Tur
8 L

bint, int ` Tur

prepare initial state

input binary integer

number of steps n to run
config of Turing machine after n steps



Running a Turing machine (stratified)

prepare initial state

T
...

` Tur§ ( Tur§
prom

` !(Tur§ ( Tur§)

...

bint§ ` Tur§ Tur§ ` Tur§
( L

bint§,Tur§ ( Tur§ ` Tur§

§

§bint§, §(Tur§ ( Tur§) ` §Tur§

( L

§bint§, !(Tur§ ( Tur§) ( §(Tur§ ( Tur§) ` §Tur§

8 L

§bint§, int§ ` §Tur§

Tur

§ = bint

§ ⌦ bint

§ ⌦ bool

§

q



Theorem (Girard)

if and only if it can be typed as a proof

A function {0, 1}⇤ �! {0, 1}⇤ is “polytime”

⇡ of bint ` bint which admits a stratification.

⇡§

...

bint§ ` §

k+2bint§

⇡
...

bint ` bint

stratifies



Theorem (Girard)

if and only if it can be typed as a proof

A function {0, 1}⇤ �! {0, 1}⇤ is “polytime”

⇡ of bint ` bint which admits a stratification.

copy

.

.

.

bint ` bint⌦ bint

bint ` bint

.

.

.

bint ` int

.

.

.

int ` int
cut

bint ` int
⌦R,⌦L

bint⌦ bint ` bint⌦ int
cut

bint ` bint⌦ int

.

.

.

bint, int ` Tur

bint⌦ int ` Tur

bint ` Tur

length P

f : {0, 1}⇤ �! {0, 1}⇤ computed by a Turing machine T with polyclock P

iterate T



Theorem (Girard)

if and only if it can be typed as a proof

A function {0, 1}⇤ �! {0, 1}⇤ is “polytime”

⇡ of bint ` bint which admits a stratification.

copy

.

.

.

bint ` bint⌦ bint

bint ` bint

.

.

.

bint ` int

.

.

.

int ` int
cut

bint ` int
⌦R,⌦L

bint⌦ bint ` bint⌦ int
cut

bint ` bint⌦ int

.

.

.

bint, int ` Tur

bint⌦ int ` Tur

bint ` Tur

length P

f : {0, 1}⇤ �! {0, 1}⇤ computed by a Turing machine T with polyclock P

iterate T

Theorem (Girard)

if and only if it can be typed as a proof

A function {0, 1}⇤ �! {0, 1}⇤ is “polytime”

⇡ of bint ` bint which admits a stratification.

f : {0, 1}⇤ �! {0, 1}⇤ computed by a Turing machine T with polyclock P

bint ` Tur Tur ` bint

read off output

Theorem (Girard)

if and only if it can be typed as a proof

A function {0, 1}⇤ �! {0, 1}⇤ is “polytime”

⇡ of bint ` bint which admits a stratification.

copy

.

.

.

bint ` bint⌦ bint

bint ` bint

.

.

.

bint ` int

.

.

.

int ` int
cut

bint ` int
⌦R,⌦L

bint⌦ bint ` bint⌦ int
cut

bint ` bint⌦ int

.

.

.

bint, int ` Tur

bint⌦ int ` Tur

bint ` Tur

length P

f : {0, 1}⇤ �! {0, 1}⇤ computed by a Turing machine T with polyclock P

iterate T

bint ` bint

⇡

Upshot: ⇡ computes f



Theorem (Girard)

if and only if it can be typed as a proof

A function {0, 1}⇤ �! {0, 1}⇤ is “polytime”

⇡ of bint ` bint which admits a stratification.

f : {0, 1}⇤ �! {0, 1}⇤ computed by a Turing machine T with polyclock P

...

int§ ` §

kint§

P
...

§bint§, int§ ` §Tur§

iterate T

⇡§

...

bint§ ` §

k+2bint§

⇡
...

bint ` bint

stratifies

copy

.

.

.

bint§ ` §(bint§ ⌦ bint§)



Summary

• There is a notion of stratification for proofs 

• Turing machines can be encoded into linear logic 

• If a Turing machine is polytime, the stratification of 
the clock polynomial gives a stratification of the 
corresponding proof in linear logic. 

• Theorem: a function of binary integers is polytime 
iff. it admits a stratification.
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