The category of open
simply-typed lamlbda terms

Daniel Murfet
based on joint work with William Troiani

Reminder on category theory

e Every adjunction gives rise to a monad

C "D C(Fz,y) = D(z,Gy)

C(FGz,z) =2 D(Gx,Gx)
M=GF, M=GFGF — GF
 Monads may be used to extend functional programming

languages in a principled way to include “ettects” (Moggi,
Wadler). This is a foundational idea in Haskell.

Reminder on category theory

Let C be a Cartesian closed category

F=sx(—)
C e
G=s=(—)

C(Fz,y)=C(s xz,y) Z2C(s,z = y) = C(s, Gy)

® Aim: to define the category of lambda terms (the basic
example of a category of programs) and study monads
on this category.

® \\Ve take a nonstandard point of view, which is
® thoroughly monadic (following Lawvere),
® treats open and closed terms on an equal footing.

® Applications: leads to a Curry-Howard correspondence
between open lambda terms and proofs with

hypotheses, and shows that the structural rules of logic
(weakening, contraction, exchange) are monadic.

Curry-Howard correspondence

logic
formula
Oroof
cut
implication intro
structural rules

open context

programming
type
program
function application

lambda abstraction

free variables

category theory
object
morphism
composition
universal factorisation
monad product, unit

Kleisli categories

Simply-typed Lambda calculus

® Types: og:=a |0y =09, e€g. 0= (7= 0)

® Preterms: M ::=xz° | (M°7P N%):p| (Ax® .NP):0 = p
® a-equivalence: Az . M =, \y° . M|z =y

® p-equivalence: ((Az? . M)N) =5 M|z := N]|

® y-equivalence: \z°.(Mz) =, M

® Free variables: FV(A\z°~"? . (xy?)) = {y : 0}

Simply-typed Lambda calculus

® [erms are preterms up to alpha equivalence

® For atype o we refer to the set of terms of this type by A,
and the set of all terms of this type up to beta (or beta-
eta)-equivalence by

AG/ —p AO/ —Bn

® [erms up to beta-equivalence do not have a well-defined
set of free variables, so we define

FVg(M)= () FV(N)

Some examples

(@) F:tr=p,G:o=>T1 Ax? . (F(Gx)):0=p
() idy =Xz .z:0=0

(¢) M7 . (F(idsy)) = Ay . (F((Az . 2)y))
=3 Ay . (F'y)
= F

Desiderata for a category of lambda terms

® Lvery type should be an object.
® Every term (open or closed) should be a morphism.

® [he basic operations on lambda terms should have natural
categorical avatars:

® function application
® /lambda abstraction
® structural rules (discarding, copying, re-ordering inputs)

® [he usual approach (Lambek-Scott) assumes product types.

Definition: The category £ has objects (let -, = {simple types})
ob(L) = o U{1}

and morphisms given for types o, 7 € ®_, by

L(o,7) = Nomsr/ =3y
L(1,0)=As/=py
L(o,1) = {x}
L£(1,1) = {x},

where x is a new symbol. For o, 7, p € ®_ the composition rule is the function

L(T,p) X L(o,T) — L(0, p)
(N, M) — \z? . (N(Mzx)),

where x ¢ FV(N)UFV(M). We write the composite as N o M. In the remaining special
cases the composite is given by the rules

L(r,p) x L(1,7) — L(1,p), NoM=(NM),
ﬁ(l,p)X£(17l)4>£(1,p), Nox=N,
L(1,p) X L(o,1) — L(0,p), Nox=A°.N,

Function application iIs composition

(N M)

M -7 N:Tip

| ambda abstraction Is factorisation

Let Y be the set of all variables, then () C Y is cofinite if Y \ @) is finite.

Definition. Let Q be a cofinite set of variables. A Q-factorisation of a term
M : 0 = p is a commutative diagram in £ with FVz(f) C @:

M
Y > p

Q=Y \{q:7} d
q ¢ FVga(f) K

ambda abstraction Is factorisation

Theorem. There is a universal ()-factorisation.

M

N

f R

o)

p

If Q=Y \{q: 7} then

Ky =T = p
Ju=Aq. M

Definition 4.7. For a subset () C Y we define a subcategory Lo C L by
ob(Lg) =ob(L) =P U{1}

and for types o, p

(0, p)
Lo(l,0)={M € L(1,0)]| FVz(M) C Q},
Lo(o,1) = L(0,1) = {x},
Lo(1,1) = £(1,1) = {x}.

Note that the last two lines have the same form as the first two, using the convention
that FVz(x) = (). We denote the inclusion functor by Ig : Lo — L. We write L for
Lo when @ =) and call this the category of closed lambda terms.

Theorem. If () is cofinite, the functor Ig : Lo — L has a right adjoint.

Theorem. If A is finite, the functor 4 : L., — L4 has a right adjoint.

\ B .
L. " L4 T, =14011s a monad

I'q (a an ordering of A)

Relation to the Lambek-Scott category

In the standard approach to associating a category to the simply-typed lambda calculus,
due to Lambek and Scott |5, §1.11], one extends the lambda calculus to include product
types, denoted o x 7, and the objects of the category C.. « are the types of the extended
calculus (which includes an empty product 1) and the set C— (o, p) is a set of equivalence
classes of pairs (z : 0, M : p) where x is a variable and M is a term with FV (M) C {z}.

Despite appearances, C-. » should really be thought of as the category of closed lambda
terms, as the following theorem makes clear. Let C_, denote the full subcategory of 6~
whose objects are elements of the set d_. .

Theorem 5.1. There is an equivalence of categories
F:Co — [él
which is the identity F'(T7) = 7 on objects, and is defined on morphisms by

F,,:Ca(o,p) — L7 (0,p). (x:0,M:p)— dx. M.

Relation to the Lambek-Scott category

Co(oxp,7)=Ca(o,p=T)

(z:oxp,M:7)— Xxy”.(Az.M){(x,y))

Structural rules are monadic

The structural rules of the sequent calculus of intuitionistic logic are

, b,q:7,¢ 7 M(q,q): 0
C t t . ctr
(Contraction) bq T Mgq) o ¢

). b-M:o
(Weakening): b r Mo weak

b.n 11,2 - M 0o
E h . 7 7 ex
(Exchange) b, 0,1 M EFM: o

where b denotes a typing context, which is an ordered list of typed variables. From the
point of view of lambda calculus these rules correspond respectively to the identification
of two free variables (contraction) the introduction of a spurious dependence on a free
variable (weakening) and the exchange of the order of two free variables in the context
which is viewed as an ordered list (exchange). These structural rules can be recognised
in the categorical presentation of lambda calculus given in this paper, using the structure
presented on the category L. by the monads 7, discussed above.

Let us first explain the interpretation [—] of typing judgements for open lambda terms
in L. If there is a typing judgement for M : o of the form

aFM:o

then the denotation is just the term M, but with the context a recorded either by the
monad 7; or by working in the category £, where A is the underlying set of a:

la-M:o]l=Me L1, T,0) =La(1,0).
Now, observe that

[6,g:7,¢d :TEM:0]l=M € Ly(1,Tyq,0).

But there is an obvious isomorphism of monads T,y = Tys.-1 on L, so that we have,
using the multiplication on the monad Ty,.ry, the map

La(1,Thqq0) = La(1, TyTigr1Tiy.110)
= La(l, ToTi4r T1m10)
— La(1, Ty Tg:ry0)
= La(1, Ty 470) .

The image under this map of [b,q : 7,¢' : 7= M : o] is precisely the result of applying
the contraction rule to the typing judgement.

