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extracts are from Maclane, Moerdijk “Sheaves in geometry and logic’
Hom(Y x X, Z) — Hom(Y, Z*)

Definition. In a category C with finite limits, a subobject classifier
is a monic, true: 1 — Q, such that to every monic S X in C there is
a unique arrow ¢ which, with the given monic, forms a pullback square

S ———1

I It 3)

>

Proposition 1. A category C with finite limits and small Hom-
sets has a subobject classifier if and only if there is an object {) and an

isomorphism
6x : Subc(X) = Homc (X, ), (4)

natural for X € C. When this holds, C is well-powered.

(i) € has all finite limits and colimits,
(ii) £ has exponentials,
(iii) £ has a subobject classifier 1 — §2.

A category £ with these properties will be called an elementary topos;
in brief a topos (plural: topoi). Each topos is, in particular, a cartesian
closed category.




Some examples

The category of sets
The category of sheaves on a topological space
The category of presheaves of sets on a small category

The topos B of Schultz-Spivak temporal type theory



For a topos £ we will follow much the same procedure, by regarding the
objects X,Y, ... of £ as the “sorts” or “types” and introducing a stock of
variables for each type. We thus propose to describe a “language” (called
the Mitchell-Bénabou language) for £; at the end of this section we will
give a description of validity for the formulas of this language [point
(4) above]. As for point (2), we will observe that the rules of inference
appropriate to a general topos are precisely the standard rules for the
first-order intuitionistic predicate calculus. This striking observation
shows that these rules are supported by the geometrical aspects of sheaf

topoi.

Finally, as in point (3), we will show that formulas ¢(z) in a variable
z of the Mitchell-Bénabou language can be used to specify objects of £
by expressions of the form

{z | &(z)} (1)

—in the fashion common in set theory. This shows how a topos be-
haves like a “universe of sets”. By using such expressions one can, for
example, mimic the usual set-theoretic constructions of the integers, ra-
tionals, reals, and complex numbers and so construct in any topos with
a natural numbers object the objects of integers, rationals, reals, ...



Let us now specify the (Mitchell-Bénabou) language of a given topos
E. The types of this language are the objects of £. We will describe the
terms (expressions) of the language by recursion, beginning with the
variables. For each type X there are to be variables z,z’, ... of type X
each such variable has as its interpretation the identity arrow 1: X — X.
More generally, a term o of type X will involve in its construction certain
(free) variables y, z, w, ..., perhaps some of them repeated. We list them
in order of first occurrence, dropping any repeated variable, as y, z, w.
If the respective types are Y, Z, W, then the product object Y x Z x W
in £ may be called the source (or domain of definition) of the term o,
while the interpretation of o is to be an arrow

c: Y X ZxW—-oX



Here are the inductive clauses which simultaneously define the terms
of the language and their interpretation:

e Each variable x of type X is a term of type X; its interpretation
is the identity x = 1: X — X.

e Terms o and 7 of types X and Y, interpreted by o: U — X and
7: V =Y, yield a term (o, 7) of type X x Y its interpretation
1S

(op,7q): W — X XY,

where the source W has evident projections p: W — U and

g: W — V. Here the notation ( , ) is used ambiguously,
both for the new term and for the familiar map into the product
X xY.

e Terms 0: U — X and 7: V — X of the same type X yield a
term o = 7 of type {2, interpreted by

(c=7): W2, x y x %50,

where W and (op,7q) are as in the previous case, while §x is
the usual characteristic map of the diagonal A: X — X x X.



o Anarrowf:X—>Y0f€;mdaterma:U—»XoftypeXto—
gether yield a term foo of type Y, with its obvious interpretation
as an actual composite

f

foo:U—F— X ——Y,

e Terms : V — YX and 0: U — X of types Y* and X yield a
term 6(o) of type Y interpreted by

0(c): W ——YX x X —5Y. (2)

where e is the evaluation and the map from W is (fq,op ), much
as above.

o Terms 0: U — X and 7: V — QX yield a term o € 7 of type 2,
interpreted as

ceT: W (ap’7q>¢X x QX c 5 Q.

e A variable z of type X and a term 0: X X U — Z yield Azo, a
term of type ZX, interpreted by the transpose of o,

\zo: U — ZX.



Terms ¢, 1, ... of type €2 will also be called formulas of the language.
To such formulas we can apply the usual logical connectives A, V, =, —,
as well as the quantifiers, to get composite terms, also of type 1. In
principle, this has already been defined: the meet A: 2 x Q) — Q given by
the internal Heyting algebra structure of €2 [see IV.6(3)] gives for terms

A
$: U - Qand ¥: V > Qanew term Ao (g, ¢): W —- Qx Q — Q,
by the clauses above. As usual, we will denote this term more briefly as
¢A1p. The same procedure applies to the other propositional connectives.
Thus

¢/\'I/):W (¢p’¢q>>QXQ A —}Q,
SV W (¢P,¢¢I)>QXQ Vv L Q,

¢=>¢:W(¢p,¢q>_>QXQ = L0

)

—|¢.W ? - {) = - (1.



Next we interpret the quantifiers: suppose ¢(z,y) is a formula containing
a free variable z of type X, and others y, ... which together give a source
X xY € € as above. Then ¢(z, y) is interpreted by an arrow X xY — ()
of £. The familiar logical formalism yields a formula

Vod(z,y) (3)

which no longer contains the variable x as a free variable, hence should
be interpreted by an arrow Y — ). This can be done as follows: consider
the unique map p: X — 1, the induced map P(p): P1 — PX, and its
internal adjoints v,

-
L4

P(p)
3

OX = PX « P1=9,

P

as in §IV.9 Theorem 2 and Proposition 4. Now the formula ¢(z, y) gives
a term Azg(z,y): Y — QX = PX, and hence a term Vyo z¢(z,y): Y —
(). We simply regard Vz¢(z,y) as shorthand for V, o (Az¢(z,y)). Exis-
tential formulas 3z ¢(z,y) can be treated in exactly the same way.



