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Derivatives of Tuning Machines in Linear Logic 91918

The aim of this talk is to explain how to differentiate a Tuning machine .
More

precisely : in a remarkable paper in 2003 Ehrhard and Regnier defined

the derivative of any algorithm with respect to one of its inputs. in the setting
of lambda calculus

.
The derivative of an algorithm is itself a kind of algorithm,

but in an extended language called differential lambda calculus
:

[ if T .
Ehrhard and L

. Regnier,
"

The differential lambda - calculus
"

,
Theoretical

Computer Science ( 2003 )
.

They pwue some strong results about this system,
but when I started looking into this

with my then Masters student  James
, we were struck on the one hand by how

radical it seems to claim that any algorithm has a derivative and on the other

hand by how inscrutable we found the answer
.

It wasn't clear to as what it

was that the derivative of an algorithm computes.

Part of the problem ,
we decided

,
was that while Tuning machines and lambda

calculus are equivalent formalisation of the intuitive notion of an algorithm ,

in the sense that the same class of functions IN → IN may be encoded in both

( the computable functions )
,

these two models of computation are in other ways

very different .

For example : it is more intuitive to program in Tuning machines

than in lambda calculus . So roughly speaking ,
we set out to see what the

Ehrhard - Regnier derivative meant for Tuning machines
,

in order that we might
obtain a more conceptual understanding of the derivative of algorithms . Today
I'd like to present what we found .

Our joint work on this is spread across three

papers ,
the last two of which we are putting the finishing touches on currently .

+
Aside :  if you enjoy math on the border of logic , categories and computation ,

check out our seminar at j
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[ D J . Clift and D. Mullet " Gfreew algebras and differential linear logic
"

arxiv : 1701.01285
.

[ 3 ] J . Clift and D. Murfet  ' '

Encodings of Turing machines in linear logic
"

,
in prep .

(4) J . Clift and D. Muvfet  " Derivatives of Tuning machines in linear logic", in prep .

Outline of the talk

!1! Introduction to Tuning machines / why derivatives don't make sense

!2! Naive Bayesian Tuning machines

!3! The derivative of a Tuning machine

!4! Application : gradient descent

Introduction A Tuning machine M is a tuple ( E
,

Q
, 8) where

E - finite tape alphabet ( DEE is called blank)

Q - finite set of stats

8 : Ex Q → Ex Qx { L
,

R } - transition function

A configuration of M is an element of EYDXQ where

£4
"

= { f. 2 → E 1 fln ) =D for all but finitely many n }
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... )

if S( 8° ,q)=( 6 ! ,q
'

,L ) ( similarly for R )

Derivatives ? Suppose

wemnmfortstepgandcallthewnlentsofthe

tapesquanesundevtheheadattime Oandtimetbyx ,y respectively .

q of

. . .

t
...

t steps
. . .

t
...

Zz 8- , X 6
, 62 my Iz I

, Y J , I
- . . - . . .

- . . - . . .

Clearly y=y( x ) depends on x ( viewing the bias fixed ) ,
and the pain

( x ,Y ) determine afunctionf :S → E
.

• since Eisfiniteand discrete
,

f has no meaningful derivative
,

but

• there is move information inthealgonthmmthaninthefunctionf ,
and

• fwmthisinfomationwecanextradiameaningfultangentmaplf .
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But why should anyone care if TMS can be differentiated or not ? Let me give
two quick reasons :

-

1) Algorithms are fundamental object of mathematics
,

if they admit an

intrinsic and conceptually meaningful notion of derivative this is a big deal
.

2) Differentiating TMS is the key to making sense of "
spaces

" of TMS
,

in a

way that may have applications in e. g. Machine Learning.

More on this at

the end of the talk
.
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!2! Naive Bayesian probability

Conceptually the meaning of the derivative of F is grounded in aversion

of Bayesian probability ,
as I will now explain . Ultimately ,

however
,

the

derivative is justified on technical grounds because it is the Ehrhard - Regnier
derivative of an encoding of Finto linear logic ( as I will explain in part @ )

.

Bayesian probability axiomitisesa (partial ) function

p : AXA -> [ 0,1 ]

( p , q ) - p(p|q ) f typicallyX=x
,

where

Sarandon variable

where A is a Boolean algebra ( 447,91) of propositions ( Cox 1946 )
.

we read Plpl e) as the conditional probability of pgivenq , thought of as

a degree of belief assigned by an observer
. Frequent'sb take IPCPI 9) =MM9Yp( g)

whenever this make sense
,

but Bayesians axiomitise PCPIE ) directly .

Probabilistic step Given a set Zwe unite

AZ = { §z7zZERZ| 7£70 for all Z and { zXz=l } c- RZ
.

for the space of (finitely supported) probability distributions on 2. The step function of M
has a probabilistic extension Dtnstep defined by

HdAnstep sta

A(s*xQ ) - D(E4DxQ )

Dmstepc

)
"

¥
×a

gutta Elect. a

-7 a
a

'

mstepla

' ) - a

instep
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# oftheinfovmationinadistributionlikec

iscapturedbythedistributionsoflherandom variables

Yult ) - wnlentoftapesquareinrelativeposnuattimet (E)
SCH - stakattimet ( Q )

Butthereisadditionalihformati0ninCCi.e.jointdistributionsJ.Usingrandomvariab1esMxlH-directiontomoreattimetCR.4WrltI-symboltowiteattimetCslandgivensomeinitialpwbabilityCattimet-Q@isxQ-sxQxk.R} )

@

Plmvlttdlc
) = § Sun,3=dP(YoH=6^sH=q|C)

@ PCWRCH - ZIC ) = § Ssc , ;g , ,=zP( YOHKZ

'^sH=9K
)

@ IPISHH)=9K)=§g,8s( a ,

,wqP(YoHta^sH=9'

Ic )

@ p( YNHHKZIC ) = fat .

,P(Yu+,H)=6^MvlH=R1C

)
+

Ju=tP(WrlH=6^MvH=R|C

)

+ Su⇒iP( Yu .

,lH⇒^MvH=4c

)
+

8u=iP(WrCH=6nMxH=4C

)
-



!7!

tm@

Notice how we cannot compute

( ( PCYNHHIK) )ua
,MSHH) / C ) ) e ( DEFIDQ

purely from the distributions for the same random variables { Yu }uea
,

5 at time t
,

because we need to also know various joint distributions
.

This need to maintain

joint distributions at each time step explains why "probabilisticprogramming
"

is

computationally expensive .
The " cheapskate

"

approximation to Ditudskp is to

assume first of all C E ( DEPPXDQ has no correlations to begin with
,

and

compute at each step assuming conditional independence ( at equal times ) of pain

{ Yo
,

s }
,

{ Yu
,

Mv }u±o
,

{ Wr
, Mv }

That is
,

we define inductively

@ Pm, ( Mutt ) =D I c) = §g Snap
,

=D
Rn

" ( Yoh = al C)
. Pm , ( SH ) = q I C )

@ pm
, ( WRCH =3 I c) =

§g Ssa
, a , ,

=3

.

Pm
, ( Yoh =3 '

1 c)
.

Pn " ( SCH = 9 1 C )
.

@ In, ( SHH ) = 91 c) = § ,

8
scan , )=q

t.nu
( Yotttal c)

pm , ( SH ) - ql I C )

@ pm, ( YNHH ) =3 1 C) = pm
,
( MHH = R ) { fat . , pm, ( Yuma ) = 6 IC )

+ Ju - -

IR
" ( wrltk 6 I C ) }

+ Pm,
IMHH =L ) { Su ⇒ , Pm, ( Yu . , IH ⇒ K )

+ Su -

ipn
" ( WRCH = 6 I C ) }
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We call this naive probability since the same kind of " cheapskate
" conditional

independence hypotheses are used in machine learning to define naive

Bayesian

classifiers
.

Note that

( ( R
, ,(Ynlttilk) )ua

,

Pm ( Sati) / C ) ) e ( DEFIDQ

cart be computed from the naive probability distributions of { Yultt }u
,

SCH
.

This defines an update rule

Dmslep
as in the commutative diagram

Dmskp
( DEYPXDQ > ( DE )4Dx DQ

I I

£4
's

× a > £ 'D
x Qinstepwhich we think of as the time evolution of a naive Bayesian observer of M .

We call Dmskp the naive pwabilistic extension of mskp .

!3! The derivative of a Turing machine

This strange probability is justified by

theorem ( Clift - M ) The Ehrhard - Regnier derivative of a Tuning machine M

computes the derivatives ( tangent maps ) of

Dmslep
.

By the Ehrhard - Regnier derivative of M we mean the derivative of an encoding
of the t - step function of M as a pwof in linear logic .

The denotation of this

derivative under a particular semantics of linear logic in vector spaces gives
a linear map ,

which is the tangent map of ( a restriction of )

Dm
slept .
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categories withwfveewalgebras

encode
l

ltunngmacnin

#linearly
.ua?aoatsual#Y)basedonaork

x a - D

ofairard { differential lineavlogicpwofs } - Veck

U .±×
t

~
sweedlersemantics

Ehrhard - Regnier ( basedoncofreewalgebras)
derivative

Thereisnotimeinthistalktoexplainlineavlogicandthetheoyofwalgebras ,

sofovthemomenttheehvhard - Regnierdenvativeisjustsome complicated

operator ontermsinaformal language .

Iwanttofocusonthetvngehtmapsoftmslep

.

Consider running Mfortsleps , withafixedinitialslaleandfixingallthetupe
squavesexaptfovtheoneinitiallyundertheheadattertstepswereadoff
thesymbolundertheheadandignovetherestofthetapeandthestate

← fixed

q %

. . -

t
...

t steps
. . -

t
...

226 . , 6
, 62 mm %% %% ,=_-i

. . . - . . .

fixed fixed

This gives a function

£

adhere.at#g4oxadYIzwhichispveciselyf:EtEfwmeavlier.Thedenvativeof1his

function
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doesn't make sense
,

because we can't infinitesimally vary an input XEE
. But

we can vary such an input inside the simplex x.CI EDE
. If we allow some

uncertainty about the symbol initially under the head
,

and propagate

thatuncertainty using the naive Bayesian approach ,
we have the bottom now of

the following commuting diagram

g-

g4D×a*-ePtg⇒×a-
[

st
's -

cas¥3aas*→ax¥Dxaa→¥s

Let in denote the bottom row by D f : DE - D's,
which is a smooth

map of manifolds with corners . Suppose E={ 8
,

I } so that we can identify

=
a

J : [ 0
, D - DE I •

n in-> ( i - h ) 8th Z ↳
which gives an identification of tangent spaces

T×( [ 0
, D) € To . ) ( DE ) C- Th ⇒ ( R

' )

112 112

RE R(
Its

- ÷
. )
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and so we can consider

To ( D f ) : Ta ( DE ) → Tfc . )( DE )

÷- ÷- x. . ÷
. )

Then an infinitesimal change in the input from 8
,

viewed as an infinitesimal

revision of the naive Bayesian observer 's degree of belief from certainty about 8

to a state of uncertainty ( 1 - Dh ) 8 t Dh 8
, propagates to a stale of uncertainty

about the output ( assuming f ( 8 ) # fly )

( 1 - X Dh ) f- ( 8 ) + XDHHZ )
.

Upshot To ( Df ) encodes a rate of change of belief X
,

and

the Ehrhard - Regnier

derivative
of M

computes
this A

.

Sunday Semantics of linear logic gives a natural
'

'

Nole propagating

way to propagate uncertainty through TMS
, uncertainty with Sstd

st
. the rate of change of this uncertainty is instead givesX-D

computed by the Ehrhard - Regnier derivative of the TM .

!4! Application : gradient descent

In light of the above we can propagate uncertainty through arbitrary algorithms
( Tuning machines ) in such a way that the role of change of output uncertainty
with respect to input uncertainty is computed by the Ehrhard - Regnier derivative

of the algorithm .
If we apply this to a Universal Tuning Machine ( UTM ) U

we get the following picture .
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To simulate M on Zlweinputthewdec ( M )e{9B* on some designated

part ofU 's tape ,
and the input xE{ 0,1 }*on another part of the tape .

If Mhaltsoninputxwithoutputy ( written Mlxty ) ten U halt

on input ( CCM )
,

x ) wilhoutputy

II.1 am ) | xIt;- -

...

a e

}÷'

kit
can I y

1¥;
Pwblem_ Given ( xD ) find M st

. M(x)=y within

tsleps
.

Restricting the step function to a fixed start state and reading off only a

region of the final tape gives mskpt :{ on

}ax{0,1T
- { 0

,

De
'

which has a naive probabilistic extension

Dnstept : D{ 0,13 '×D{ aid - D{ one
'

gf9m9Yguffda9
.to#YuaYe
actually in { 0,139

Taking the KL - divergence against ( x ,Y ) gives a smooth map
leavens

L :-D,a( Y 11 Dwsteptf ,
x ) ) :(D{ 0,13 )a→R .

Gradient descent with respect to Lis away of searching the "

space
" of

probabilistic algorithms indexed by ( D{ 0
, B)

a

,
in which actual Tmssitas

the vertices { 0,139 using derivatives of Land thus of Dustept and thus

the Ehrhard - Regnier derivatives of 2C itself
.
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) ( * )

for some point kE[ 0179
.

For Dstdthiscakulationhastime

complexity 2
a

because in this case the gradient descent is essentially
just trying every Tuning machine with wdelengthaatofindone
that works

.

Thus gradient descent using DSM is pointless
.

. However

the time complexity of computing the naive probability 1*1

is polynomial , soinpnncipleitisa feasible way to search for programs .

Example Consider the special case a= Zandltl
, y=1eE

L : [0/1] #Rystandsfov( i - h ) .oth1ES{ 0113
.

L ( h ,k)= - ln( Dustept ( h ,k,x)1 )

Nownecall Susteptt ,-,x)1
: [ 0,172 -> R

Ten,m( Sustepttnx ) ) : RFHARFK -> R is ( Xixz )

...
- £44 ,k)= Xi

Dwsteptlh ,k ,x)1

- FILM ,k ) =
72

snsteptlhik , >c) 1


