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Reversible Computation .

Part I
,

revers  i be tuning machines
.

In Deutsch 's 84 paper
"

Quantum Theory .
the Church Turing Principle and the

niversal Quantum Computer
"

,
it  is explained how a computational step in his model

of quantum computation , is performed by applying some unitary operator to a vector

in some Hilbert space .
Since this operator is unitary ,

it is in particular invertible
.

Thus
, any quantum computation must at least be reversible .

Reversible computation
has also been studied on its own for  its various applications to the connections

between thermal dynamics and computation ,
See

"

Noles on the History of Reversible Computation
"

,

by Bennett for  a review .

But what does it mean for a computation to be reversible ?

I thought of two different possible definitions ,

There exists  a TM M ' such that for all inputs w on

which M halts
,

M 'M Iwl -

-
w -

- MM ' l WI
.

.

Not quite a- M may have  States
as  simple  as

which  exhibit  non - injective
taking the

unique  inverse -0 behavior
, but  which are

of  each image to never  reached by any
construct  M '

. input .

Need to  consider

polite turing machines
.

( can't move  and then

read t  write )

The transition function is injective .

What we really want is :

Def
'

: A Turing machine M is reversible if  it can be - -

run backwards
"

.

So the 1st definition is close
,

but the behavior and construction of M '
matters

.

Bennett essentially asks for the second definition
,

and then uses  injection 'ty to

construct M '
as in the first definition .

The proof of theorem I ( later ) shows this
.



The question now
,

is what computational limits are imposed ,

when reversibility
is demanded at each stage ,

ie
,

" Are
some logically irreversible operations necessary for nontrivial computation

" ?

The amazing answer to this question is "
no

" ! In fact there is no loss of
computational power in demanding reversibility . Before going any further

though ,
these claims ought to be stated more precisely .

Part  of the definition of  a turing machine  is  a transition function
S : Q  x I Q  x I x I LEFT

,
RIGHT

,
STA -13

,
where Q and I are finite sets

.

Thus
,

S

is given by a finite set  of quintuples C satisfying some  conditions )
. The notation

( q ,
w ) ( q

'

,
w

,

o ) will be  used for the quintuple ( of ,
w

, g
'

,
w

'

,
o ) .An equivalent C in

some sense ) variant of a turing machine  is that of polite turing machines
,

where the

transitions which react I writethe tape are separate to those which move the tape head
.

Defa : A polite turing machine is a turing machine which moves the tape head iff  it

leaves the symbol just read unchanged,
ie

,
the transition function  is such that

I l q ,
w

,
) ( q

'

,

w
'

,
o ) c- 8

, if o E I LEFT
,

RIGHT }
,

then w = w
'

.

The reason why these are considered is because
"

the reverse
" of a TM is not

,

technically speaking ,
a TM

,
as a TM is meant to rewrite

,
then move

,

not move and then rewrite
.

For what follows
,

it will be convenient to talk about reversible multi tape
turing machines

,
and multi tape polite turing machines

,
with evident

definitions .



The formal version of the statement
"

any turing machine can be made to

be reversible
"

is as follows
,

Th ' I '

. Let M be any luring machine
.

Then there exists a reversible
,

3- tape , polite turing machine S such that
,

. if M halts on input w
,

then S halts on input ( w
,

u
,  w )

,
and

.  if Mcw ) -

- W
'

,
then SCW

,  u
,

u ) = ( w
,

u
,

w
' )

.

The role of the second tape is to record a history of the steps
taken by M

.

However
,

the theorem is guile unsubstantial unless it is required
that S erases this information .

The importance of the theorem is the

face that this erasure can be done reversibly .

Before presenting the proof  of the theorem
,

the following theorem is

Mentioned
,

Tha 2 : Given a reversible multi tape turning machine
.

the corresponding
single tape tuning machine is also reversible

.

The proof is a matter of delicately choosing the States used in the

corresponding single tape Trl
.

James ' construction from last week works with

only a few alterations needed
. The details are tedious

,

but a rigorous proof
can be found on page 143 of Kenichi Morita 's

"

Theory of Reversible Computing
"

,

( 2017 )
.



Proof sketch of Eh '
I :

construct  a add 2 blank tapes
Take an arb Turnmire polite ( single tape ) Tammi 3 - tape , split TM

which executes 3

stages .

I  N  P T O
-

U  T  P T O
-

U  T  P T I  N  P T

me H  I  S  T  0  R  y Mt H  I  S  T  0  R  Y me

O
-

U  T  P   T O
-

U  T  P   T

Proof of that :

Let M be  an  arbitrary turing machine
,

with transition function S ( thought  of as

a set  of quintuples )
.

Label the  elements of 8 with integers I through to

n in  any way ,
where IS I = n

.

For each quintuple ,
define a pair of quadruples as follows ,

( q ,
w ) (

gin ,
w

'

,
STAY )4thquintuple ( q ,

w ) Ig. w
'

,

ol ) ( coin ,
wi ) I q

'

. w
'

,
or )

)

Now add the history and output tapes ,
and define the transition function

to record the history so that the heh pair of 3 - tape quadruples is
,

( q ,
( W

,
hi

,

u ) ) ( oh ,
C w '

,
he

,
hi )

,
( STAY

,
RIGHT

,
STAY )

( of
'

k ,

( W
'

,
u

,

u ) ) ( g
'

,
( w '

, k
,

u )
,

( O
,

STAY
,

STAY
! )

This  is actually the key step to the proof .
The important subtlety is that

the 3 - tape TM doesn't write the history of the step at the same time  as

writing image of that  step  on the first tape ,
instead

,
it writes the history as

the first tape 's head is making a movement
.

This ensures that the number k

appears in exactly 2 quadruples .
This guarantees  injection 'ty ,

as the k in the

image  of any quadruple reduces the size  of the pre image to 2
,

and the presence  or

absence of the h in the subscript  of the stale then reduces the pre image to

have a unique element
.

Lastly , copying can clearly be done reversibly ,
and erasing the history tape while

returning the output  on tape I to the  input  is just the reverse  of the first step which



has just been seen to be reversible
. I

A technical point .

.

This proof doesn't - really - describe a single reversible TM
,

but rather 3 back - to -

back ones
,

but these can be made  into a single TM by giving unique
state names toeach of the Stages .

The next part of the  talk is on reversible logic gates . Turing machines  are a

theoretical model of computation ,
and logic gates model the actual engineering

behind computers .



Part 2
,

reversible logic gates .

Clearly .
not all logic gates are reversible

, for example , if  an  or gate is

emitting an electric signal ,

it  cannot be  uniquely determined what configuration
the input wires were in without more information .

An easy example of a reversible logic gate  is the "
not

' '

gate ,

Notation : Truth table :

° INP T O TP T

O I

1 O

A similar question to that of the first part  of this talk arises
,

"
is there a

complete see  of reversible logic gates
" ?

Answer : Yes ! In fact ,
there is a complete see of reversible logic gates consisting

of a single  element !

This element is the CCNOT gate .

First
,

the C Not gate  will be defined .

Def ' the CNOT gate ( controlled NOT gate )
,

is given by ,

Notation : Truth table :

A A
'

A B A
'

B
'

O O O O } Identity gate , as

B B
'

0 I 0 I A -

- o
.

1 0 I I } Not gate ,
as A -

- 1 .

I 1 I 0

The idea is Chae a CNOT gate is a not gate which is " controlled "

C ie
,

decided whether it acts like a Not gate or an  identity gate ) by the

first input .



So the CCNOT gate  is then a
" controlled CNOT gate

"

,
and is given by ,

Notation : Truth table :

A A
'

A B C A
'

B
'

C
'

O O O O O O

B B
'

O O I O O 1

O I 0 O I O

c c
'

O 1 I 0 I 1

I O O I O O

I O I I 0 I

1 I 0 I 1 I

1 I 1 I I O

s

Reversible by
/

inspection .

THE : The see containing only the Corot gate  is  complete .

Proof :

An IOR gate can be simulated by a cwot gate by interpreting output B
'

as Eor CAB ?

A B B
'

O O O

° I 1

1 O I

t I O

and CNOT gates  can clearly be  simulated on a CCNOT gate .

Moreover
,

the  output  c
' of a CCNOT gate is AND CA

,
B )

,

A B C c
'

O O O O

O I O 0

I O O O

1 I 0 I

I


